197 research outputs found

    The Levantine Basin - crustal structure and origin

    Get PDF
    The origin of the Levantine Basin in the Southeastern Mediterranean Sea is related to the opening of the Neo-Tethys. The nature of its crust has been debated for decades. Therefore, we conducted a geophysical experiment in the Levantine Basin. We recorded two refraction seismic lines with 19 and 20 ocean bottom hydrophones, respectively, and developed velocity models. Additional seismic reflection data yield structural information about the upper layers in the first few kilometers. The crystalline basement in the Levantine Basin consists of two layers with a P-wave velocity of 6.06.4 km/s in the upper and 6.56.9 km/s in the lower crust. Towards the center of the basin, the Moho depth decreases from 27 to 22 km. Local variations of the velocity gradient can be attributed to previously postulated shear zones like the Pelusium Line, the DamiettaLatakia Line and the BaltimHecateus Line. Both layers of the crystalline crust are continuous and no indication for a transition from continental to oceanic crust is observed. These results are confirmed by gravity data. Comparison with other seismic refraction studies in prolongation of our profiles under Israel and Jordan and in the Mediterranean Sea near Greece and Sardinia reveal similarities between the crust in the Levantine Basin and thinned continental crust, which is found in that region. The presence of thinned continental crust under the Levantine Basin is therefore suggested. A β-factor of 2.33 is estimated. Based on these findings, we conclude that sea-floor spreading in the Eastern Mediterranean Sea only occurred north of the Eratosthenes Seamount, and the oceanic crust was later subducted at the Cyprus Arc

    The Psychology of Beethoven and The Eroica Symphony

    Get PDF
    As a concert pianist and chapel organist, Beethoven rose to a fame in Vienna which allowed him patrons and friends who would support his compositions. One such patron was Count Waldstein, who claimed that Beethoven would inherit the spirit of Mozart in his famous prediction of Beethoven’s success. To study composition Beethoven turned to two prominent Viennese composers: Haydn and Salieri. As his fame grew, his health decreased until he was diagnosed with deafness and moved to Heiligenstadt. Here Beethoven wrote a letter to his brothers called the Heiligenstadt Testament, which was never sent but expressed his troubled mental state. Beethoven composed his Eroica Symphony in a time in his life when, accepting the onset of his deafness, he also experienced the onset of depression. The Eroica Symphony has threads of Heroism running throughout it, and tells the story of life over death. But a question remains surrounding the work: Who is the Hero

    Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism

    Get PDF
    Highlights: • Marie Byrd Seamounts (MBS) formed off Antarctica at 65-56 Ma in an extensional regime • MBS originate from HIMU-type mantle attached at the base of the Antarctic lithosphere • Continental insulation flow transferred HIMU mantle into the oceanic mantle New radiometric age and geochemical data of volcanic rocks from the guyot-type Marie Byrd Seamounts (MBS) and the De Gerlache Seamounts and Peter I Island (Amundsen Sea) are presented. 40Ar/39Ar ages of the shield phase of three MBS are Early Cenozoic (65 to 56 Ma) and indicate formation well after creation of the Pacific-Antarctic Ridge. A Pliocene age (3.0 Ma) documents a younger phase of volcanism at one MBS and a Pleistocene age (1.8 Ma) for the submarine base of Peter I Island. Together with published data, the new age data imply that Cenozoic intraplate magmatism occurred at distinct time intervals in spatially confined areas of the Amundsen Sea, excluding an origin through a fixed mantle plume. Peter I Island appears strongly influenced by an EMII type mantle component that may reflect shallow mantle recycling of a continental raft during the final breakup of Gondwana. By contrast the Sr-Nd-Pb-Hf isotopic compositions of the MBS display a strong affinity to a HIMU type mantle source. On a regional scale the isotopic signatures overlap with those from volcanics related to the West Antarctic Rift System, and Cretaceous intraplate volcanics in and off New Zealand. We propose reactivation of the HIMU material, initially accreted to the base of continental lithosphere during the pre-rifting stage of Marie Byrd Land/Zealandia to explain intraplate volcanism in the Amundsen Sea in the absence of a long-lived hotspot. We propose continental insulation flow as the most plausible mechanism to transfer the sub-continental accreted plume material into the shallow oceanic mantle. Crustal extension at the southern boundary of the Bellingshausen Plate from about 74 to 62 Ma may have triggered adiabatic rise of the HIMU material from the base of Marie Byrd Land to form the MBS. The De Gerlache Seamounts are most likely related to a preserved zone of lithospheric weakness underneath the De Gerlache Gravity Anomaly

    Bathymetric controls on calving processes at Pine Island Glacier

    Get PDF
    Pine Island Glacier is the largest current Antarctic contributor to sea level rise. Its ice loss has substantially increased over the last 25 years through thinning, acceleration and grounding line retreat. However, the calving line positions of the stabilizing ice shelf did not show any trend within the observational record (last 70 years) until calving in 2015 led to unprecedented retreat and changed alignment of the calving front. Bathymetric surveying revealed a ridge below the former ice shelf and two shallower highs to the north. Satellite imagery shows that ice contact on the ridge likely was lost in 2006 but was followed by intermittent contact resulting in back stress fluctuations on the ice shelf. Continuing ice shelf flow also led to occasional ice shelf contact with the northern bathymetric highs, which initiated rift formation that led to calving. The observations show that bathymetry is an important factor in initiating calving events

    Deep water inflow slowed offshore expansion of the West Antarctic Ice Sheet at the Eocene-Oligocene transition

    Get PDF
    The stability of the West Antarctic Ice Sheet is threatened by the incursion of warm Circumpolar Deepwater which flows southwards via cross-shelf troughs towards the coast there melting ice shelves. However, the onset of this oceanic forcing on the development and evolution of the West Antarctic Ice Sheet remains poorly understood. Here, we use single- and multichannel seismic reflection profiles to investigate the architecture of a sediment body on the shelf of the Amundsen Sea Embayment. We estimate the formation age of this sediment body to be around the Eocene-Oligocene Transition and find that it possesses the geometry and depositional pattern of a plastered sediment drift. We suggest this indicates a southward inflow of deep water which probably supplied heat and, thus, prevented West Antarctic Ice Sheet advance beyond the coast at this time. We conclude that the West Antarctic Ice Sheet has likely experienced a strong oceanic influence on its dynamics since its initial formation

    Evidence for a highly dynamic West Antarctic Ice Sheet during the Pliocene

    Get PDF
    Major ice loss in the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is hypothesized to have triggered ice sheet collapses during past warm periods such as those in the Pliocene. International Ocean Discovery Program (IODP) Expedition 379 recovered continuous late Miocene to Holocene sediments from a sediment drift on the continental rise, allowing assessment of sedimentation processes in response to climate cycles and trends since the late Miocene. Via seismic correlation to the shelf, we interpret massive prograding sequences that extended the outer shelf by 80 km during the Pliocene through frequent advances of grounded ice. Buried grounding zone wedges indicate prolonged periods of ice-sheet retreat, or even collapse, during an extended mid-Pliocene warm period from ∼4.2‒3.2 Ma inferred from Expedition 379 records. These results indicate that the WAIS was highly dynamic during the Pliocene and major retreat events may have occurred along the Amundsen Sea margin

    Ice sheet–free West Antarctica during peak early Oligocene glaciation

    Get PDF
    One of Earth’s most fundamental climate shifts – the greenhouse-icehouse transition 34 Ma ago – initiated Antarctic ice-sheet build-up, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7–33.2 Ma) that immediately followed this transition, a critical knowledge gap for assessing feedbacks between permanently glaciated areas and early Cenozoic global climate reorganization, is uncertain. Here, we present shallow-marine drilling data constraining earliest Oligocene environmental conditions on West Antarctica’s Pacific margin – a key region for understanding Antarctic ice sheet-evolution. These data indicate a cool-temperate environment, with mild ocean and air temperatures preventing West Antarctic Ice Sheet formation. Climate-ice sheet modeling corroborates a highly asymmetric Antarctic ice sheet, thereby revealing its differential regional response to past and future climatic change

    Role of Fibronectin in the Adhesion of Acinetobacter baumannii to Host Cells

    Get PDF
    Adhesion to host cells is an initial and important step in Acinetobacter baumannii pathogenesis. However, there is relatively little information on the mechanisms by which A. baumannii binds to and interacts with host cells. Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade epithelial cells. Here, we found that A. baumannii adheres more avidly to immobilized fibronectin than to control protein. Free fibronectin used as a competitor resulted in dose-dependent decreased binding of A. baumannii to fibronectin. Three outer membrane preparations (OMPs) were identified as fibronectin binding proteins (FBPs): OMPA, TonB-dependent copper receptor, and 34 kDa OMP. Moreover, we demonstrated that fibronectin inhibition and neutralization by specific antibody prevented significantly the adhesion of A. baumannii to human lung epithelial cells (A549 cells). Similarly, A. baumannii OMPA neutralization by specific antibody decreased significantly the adhesion of A. baumannii to A549 cells. These data indicate that FBPs are key adhesins that mediate binding of A. baumannii to human lung epithelial cells through interaction with fibronectin on the surface of these host cells
    corecore