7 research outputs found

    Theology, News and Notes - Vol. 37, No. 04

    Get PDF
    Theology News & Notes was a theological journal published by Fuller Theological Seminary from 1954 through 2014.https://digitalcommons.fuller.edu/tnn/1109/thumbnail.jp

    Subfossil statoblasts of Lophopodella capensis (Sollas, 1908) (Bryozoa: Phylactolaemata: Lophopodidae) in the Upper Pleistocene and Holocene sediments of a montane wetland, Eastern Mau Forest, Kenya

    Get PDF
    Lophopodella capensis (Sollas, 1908) is only known from a limited number of palustrine and lacustrine sites in southern Africa and single sites in both Kenya and Israel. Statoblasts of L. capensis were found preserved in the Upper Pleistocene and Holocene aged sediments of Enapuiyapui wetland, Eastern Mau Forest, western Kenya. The wetland is a headwater microcatchment of tributaries that feed into the Mara River and the Lake Victoria Basin. Bryozoan taxa were not surveyed in a 2007 macroinvertebrate biodiversity assessment. The presence of L. capensis at this site marks the second observation of this taxon in Kenya, 65 km from Lake Naivasha, where observed prior, and in a location some 1000 meters higher. The results suggest Bryozoa should be included in aquatic biodiversity surveys that target these wetlands and that bryozoan remains should be incorporated into palaeoecological studies as useful palaeoenvironmental indicators

    Late Holocene wetland transgression and 500 years of vegetation and fire variability in the semi-arid Amboseli landscape, southern Kenya

    Get PDF
    The semi-arid Amboseli landscape, southern Kenya, is characterised by intermittent groundwater-fed wetlands that form sedimentary geoarchives recording past ecosystem changes. We present a 5000-year environmental history of a radiocarbon dated sediment core from Esambu Swamp adjacent to Amboseli National Park. Although radiocarbon dates suggest an unconformity or sedimentary gap that spans between 3800 and 500 cal year BP, the record provides a unique insight into the long-term ecosystem history and wetland processes, particularly the past 500 years. Climatic shifts, fire activity and recent anthropogenic activity drive changes in ecosystem composition. Prior to 3800 cal year BP the pollen data suggest semi-arid savanna ecosystem persisted near the wetland. The wetland transgressed at some time between 3800 and 500 cal year BP and it is difficult to constrain this timing further, and palustrine peaty sediments have accumulated since 400 cal year BP. Increased abundance of Afromontane forest taxa from adjacent highlands of Kilimanjaro and the Chyulu Hills and local arboreal taxa reflect changes in regional moisture budgets. Particularly transformative changes occurred in the last five centuries, associated with increased local biomass burning coeval with the arrival of Maa-speaking pastoralists and intensification of the ivory trade. Cereal crops occurred consistently from around 300 cal year BP, indicative of further anthropogenic activity. The study provides unique insight in Amboseli ecosystem history and the link between ecosystem drivers of change. Such long-term perspectives are crucial for future climate change and associated livelihood impacts, so that suitable responses to ensure sustainable management practices can be developed in an important conservation landscape

    Radiocarbon dates, magnetic susceptibility and subfossil remains of Lophopodella capensis (Sollas, 1908) data from a sediment core collected from Enapuiyapui wetland, Eastern Mau Forest, Kenya

    No full text
    These data were created from an examination of a 537 cm long sediment core collected from centre of Enapuiyapui wetland, Kiptunga Forest Block, Eastern Mau Forest, western Kenya. The core was collected in 2014 and taken at 0° 26' 11.28" S, 35° 47' 58.74" E, 2920 m asl, using a 50 cm Russian corer with ~10 cm overlapped coring drives. The dataset includes radiocarbon dating results, the age-depth model, magnetic susceptibility core logging, and presence data of subfossil statoblast remains of the freshwater bryozoan Lophopodella capensis (Sollas, 1908) are represented in this dataset. This research was funded by Resilience in East African Landscapes (REAL), a European Commission Marie Curie Initial Training Network grant to Rob Marchant (FP7-PEOPLE-2013-ITN project number 606879)

    Latitudinal limits to the predicted increase of the peatland carbon sink with warming

    Get PDF
    The carbon sink potential of peatlands depends on the balance of carbon uptake by plants and microbial decomposition. The rates of both these processes will increase with warming but it remains unclear which will dominate the global peatland response. Here we examine the global relationship between peatland carbon accumulation rates during the last millennium and planetary-scale climate space. A positive relationship is found between carbon accumulation and cumulative photosynthetically active radiation during the growing season for mid- to high-latitude peatlands in both hemispheres. However, this relationship reverses at lower latitudes, suggesting that carbon accumulation is lower under the warmest climate regimes. Projections under Representative Concentration Pathway (RCP)2.6 and RCP8.5 scenarios indicate that the present-day global sink will increase slightly until around AD 2100 but decline thereafter. Peatlands will remain a carbon sink in the future, but their response to warming switches from a negative to a positive climate feedback (decreased carbon sink with warming) at the end of the twenty-first century
    corecore