183 research outputs found

    Due Process and the Tax Court

    Get PDF

    Madelung Disease: MR Findings

    Get PDF
    Summary: Two cases of Madelung disease (benign symmetrical lipomatosis) are presented. The MR findings in this striking condition are demonstrated. Short-repetition-time/short-echo time sequences nicely show the relationship of the cervical lipomatous accumulations to the airway and major neurovascular structures in the carotid spaces. Fat-suppression techniques add no additional information in the radiologic evaluation of these patients

    Retinal Pigment Epithelium-Secreted VEGF-A Induces Alpha-2-Macroglobulin Expression in Endothelial Cells.

    Get PDF
    Alpha-2-macroglobulin (A2M) is a protease inhibitor that regulates extracellular matrix (ECM) stability and turnover. Here, we show that A2M is expressed by endothelial cells (ECs) from human eye choroid. We demonstrate that retinal pigment epithelium (RPE)-conditioned medium induces A2M expression specifically in ECs. Experiments using chemical inhibitors, blocking antibodies, and recombinant proteins revealed a key role of VEGF-A in RPE-mediated A2M induction in ECs. Furthermore, incubation of ECs with RPE-conditioned medium reduces matrix metalloproteinase-2 gelatinase activity of culture supernatants, which is partially restored after A2M knockdown in ECs. We propose that dysfunctional RPE or choroidal blood vessels, as observed in retinal diseases such as age-related macular degeneration, may disrupt the crosstalk mechanism we describe here leading to alterations in the homeostasis of choroidal ECM, Bruch's membrane and visual function.This work was funded by grants EY08538 and GM34107 from NIH, award 2013-028 by the Tri-Institutional Stem Cell Initiative established by a grant from The Starr Foundation and by Departmental grants from Research to Prevent Blindness and Dyson Foundations (E.R.-B.). I.B. was supported by the Comunidad Autónoma de Madrid (grants 2017-T1/BMD-5247 and 2021-5A/BMD20944). The CNIC is supported by the Ministerio de Ciencia e Innovación (MCIN), the Instituto de Salud Carlos III, and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MCIN/AEI/10.13039/501100011033). R.F.M. and S.Z. were supported by grant EY024605 from NIH. J.M.-G. was supported by grant RTI2018-094727-B-100 funded by MCIN/AEI/10.13039/501100011033.S

    Retinal Pigment Epithelium-Secreted VEGF-A Induces Alpha-2-Macroglobulin Expression in Endothelial Cells

    Get PDF
    Altres ajuts: NIH (EY08538, GM34107, EY024605); Tri-Institutional Stem Cell Initiative established by a grant from The Starr Foundation and by Departmental grants from Research to Prevent Blindness and Dyson Foundations (award 2013-028); Comunidad Autónoma de Madrid (2017-T1/BMD-5247, 2021-5A/BMD-20944); Instituto de Salud Carlos III; Pro-CNIC Foundation.Alpha-2-macroglobulin (A2M) is a protease inhibitor that regulates extracellular matrix (ECM) stability and turnover. Here, we show that A2M is expressed by endothelial cells (ECs) from human eye choroid. We demonstrate that retinal pigment epithelium (RPE)-conditioned medium induces A2M expression specifically in ECs. Experiments using chemical inhibitors, blocking antibodies, and recombinant proteins revealed a key role of VEGF-A in RPE-mediated A2M induction in ECs. Furthermore, incubation of ECs with RPE-conditioned medium reduces matrix metalloproteinase-2 gelatinase activity of culture supernatants, which is partially restored after A2M knockdown in ECs. We propose that dysfunctional RPE or choroidal blood vessels, as observed in retinal diseases such as age-related macular degeneration, may disrupt the crosstalk mechanism we describe here leading to alterations in the homeostasis of choroidal ECM, Bruch's membrane and visual function

    Priming by Chemokines Restricts Lateral Mobility of the Adhesion Receptor LFA-1 and Restores Adhesion to ICAM-1 Nano-Aggregates on Human Mature Dendritic Cells

    Get PDF
    LFA-1 is a leukocyte specific β2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.Peer ReviewedPostprint (published version

    Genetic Variants in HSD17B3, SMAD3, and IPO11 Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes

    Get PDF
    Individuals with type 2 diabetes (T2D) and dyslipidemia are at an increased risk of cardiovascular disease. Fibrates are a class of drugs prescribed to treat dyslipidemia, but variation in response has been observed. To evaluate common and rare genetic variants that impact lipid responses to fenofibrate in statin-treated patients with T2D, we examined lipid changes in response to fenofibrate therapy using a genomewide association study (GWAS). Associations were followed-up using gene expression studies in mice. Common variants in SMAD3 and IPO11 were marginally associated with lipid changes in black subjects (P < 5 x 10(-6)). Rare variant and gene expression changes were assessed using a false discovery rate approach. AKR7A3 and HSD17B13 were associated with lipid changes in white subjects (q < 0.2). Mice fed fenofibrate displayed reductions in Hsd17b13 gene expression (q < 0.1). Associations of variants in SMAD3, IPO11, and HSD17B13, with gene expression changes in mice indicate that transforming growth factor-beta (TGF-) and NRF2 signaling pathways may influence fenofibrate effects on dyslipidemia in patients with T2D

    Genetic Variants in \u3cem\u3eHSD17B3\u3c/em\u3e, \u3cem\u3eSMAD3\u3c/em\u3e, and \u3cem\u3eIPO11\u3c/em\u3e Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes

    Get PDF
    Individuals with type 2 diabetes (T2D) and dyslipidemia are at an increased risk of cardiovascular disease. Fibrates are a class of drugs prescribed to treat dyslipidemia, but variation in response has been observed. To evaluate common and rare genetic variants that impact lipid responses to fenofibrate in statin‐treated patients with T2D, we examined lipid changes in response to fenofibrate therapy using a genomewide association study (GWAS). Associations were followed‐up using gene expression studies in mice. Common variants in SMAD3 and IPO11 were marginally associated with lipid changes in black subjects (P \u3c 5 × 10‐6). Rare variant and gene expression changes were assessed using a false discovery rate approach. AKR7A3 and HSD17B13 were associated with lipid changes in white subjects (q \u3c 0.2). Mice fed fenofibrate displayed reductions in Hsd17b13 gene expression (q \u3c 0.1). Associations of variants in SMAD3, IPO11, and HSD17B13, with gene expression changes in mice indicate that transforming growth factor‐beta (TGF‐β) and NRF2 signaling pathways may influence fenofibrate effects on dyslipidemia in patients with T2D

    Single-cell profiling reveals an endothelium-mediated immunomodulatory pathway in the eye choroid

    Get PDF
    The activity and survival of retinal photoreceptors depend on support functions performed by the retinal pigment epithelium (RPE) and on oxygen and nutrients delivered by blood vessels in the underlying choroid. By combining single-cell and bulk RNA sequencing, we categorized mouse RPE/choroid cell types and characterized the tissue-specific transcriptomic features of choroidal endothelial cells. We found that choroidal endothelium adjacent to the RPE expresses high levels of Indian Hedgehog and identified its downstream target as stromal GLI1+ mesenchymal stem cell-like cells. In vivo genetic impairment of Hedgehog signaling induced significant loss of choroidal mast cells, as well as an altered inflammatory response and exacerbated visual function defects after retinal damage. Our studies reveal the cellular and molecular landscape of adult RPE/choroid and uncover a Hedgehog-regulated choroidal immunomodulatory signaling circuit. These results open new avenues for the study and treatment of retinal vascular diseases and choroid-related inflammatory blinding disorders.Funding for this study was provided by National Institutes of Health grants EY08538 and GM34107 (E. Rodriguez-Boulan); EY027038 (R.F. Mullins); 1R21CA224391-01A1 (J.H. Zippin); and 1R01CA194547, 1U24CA210989, and P50CA211024 (O. Elemento); National Cancer Institute grant R01CA192176 and cancer center support grant P30 CA008748-48 (A.L. Joyner); Comunidad Autónoma de Madrid grant 2017-T1/BMD-5247 (I. Benedicto); Agencia Nacional Argentina de Promoción Cient´ıfica y Tecnológica grant PICT 2014-3687 and Fundación Sales (G.A. Rabinovich); a Pew Latin American Fellowship (G.L. Lehmann); Calder Research Scholar Award Vitiligo/Pigment Cell Disorders (J.H. Zippin); Starr Foundation Tri-Institutional Stem Cell Initiative award 2013-028; NYSTEM contract C32596GG; and Research to Prevent Blindness and Dyson Foundation departmental grants. The CNIC is supported by the Instituto de Salud Carlos III, the Ministerio de Ciencia e Innovación, and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505).S

    Triglyceride-rich lipoproteins and their remnants : metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society

    Get PDF
    Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD. [GRAPHICS] .Peer reviewe
    corecore