
Follow this and additional works at: https://uknowledge.uky.edu/ps_facpub 

 Part of the Genetics and Genomics Commons, Pharmacology Commons, Pharmacy and 

Pharmaceutical Sciences Commons, and the Therapeutics Commons 

University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Pharmaceutical Sciences Faculty Publications Pharmaceutical Sciences 

4-2018 

Genetic Variants in Genetic Variants in HSD17B3, , SMAD3, and , and IPO11  Impact Impact 

Circulating Lipids in Response to Fenofibrate in Individuals With Circulating Lipids in Response to Fenofibrate in Individuals With 

Type 2 Diabetes Type 2 Diabetes 

Daniel M. Rotroff 
North Carolina State University 

Sonja S. Pijut 
University of Kentucky, srhee2@uky.edu 

Skylar W. Marvel 
North Carolina State University 

John R. Jack 
North Carolina State University 

See next page for additional authors 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232598883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ps_facpub
https://uknowledge.uky.edu/ps
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
https://uknowledge.uky.edu/ps_facpub?utm_source=uknowledge.uky.edu%2Fps_facpub%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/27?utm_source=uknowledge.uky.edu%2Fps_facpub%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/66?utm_source=uknowledge.uky.edu%2Fps_facpub%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/731?utm_source=uknowledge.uky.edu%2Fps_facpub%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/731?utm_source=uknowledge.uky.edu%2Fps_facpub%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/993?utm_source=uknowledge.uky.edu%2Fps_facpub%2F119&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors 
Daniel M. Rotroff, Sonja S. Pijut, Skylar W. Marvel, John R. Jack, Tammy M. Havener, Aurora Pujol, Agatha 
Schluter, Gregory A. Graf, Henry N. Ginsberg, Hetal S. Shah, He Gao, Mario-Luca Morieri, Alessandro Doria, 
Josyf C. Mychaleckyi, Howard L. McLeod, John B. Buse, Michael J. Wagner, Alison A. Motsinger-Reif, and 
ACCORD/ACCORDion Investigators 

Genetic Variants in HSD17B3, SMAD3, and IPO11 Impact Circulating Lipids in Response 
to Fenofibrate in Individuals With Type 2 Diabetes 
Notes/Citation Information 
Published in Clinical Pharmacology & Therapeutics, v. 103, issue 4, p. 712-721. 

© 2017 American Society for Clinical Pharmacology and Therapeutics 

The copyright holder has granted the permission for posting the article here. 

The document available for download is the authors' post-peer-review final draft of the article. 

Digital Object Identifier (DOI) 
https://doi.org/10.1002/cpt.798 

This article is available at UKnowledge: https://uknowledge.uky.edu/ps_facpub/119 

https://uknowledge.uky.edu/ps_facpub/119


Genetic Variants in HSD17B3, SMAD3, and IPO11 Impact 
Circulating Lipids in Response to Fenofibrate in Individuals With 
Type 2 Diabetes

Daniel M. Rotroff1,2, Sonja S. Pijut3, Skylar W. Marvel1, John R. Jack1, Tammy M. Havener4, 
Aurora Pujol5,6, Agatha Schluter5, Gregory A. Graf3,7,8, Henry N. Ginsberg9, Hetal S. 
Shah10, He Gao10, Mario-Luca Morieri10, Alessandro Doria10, Josyf C. Mychaleckyi11, 
Howard L. McLeod12, John B. Buse13, Michael J. Wagner4, Alison A. Motsinger-Reif1,2, and 
the ACCORD/ACCORDion Investigators
1Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA

2Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA

3Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA

4Center for Pharmacogenomics and Individualized Therapy, University of North Carolina Chapel 
Hill, Chapel Hill, North Carolina, USA

5Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), and 
CIBERER U759, Center for Biomedical Research on Rare Diseases, Barcelona, Spain

6Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

7Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, 
Kentucky, USA

8Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA

9Irving Institute for Clinical and Translational Research, Columbia University College of Physicians 
and Surgeons, New York, New York, USA

10Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA

11Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA

12Moffitt Cancer Center, Tampa, Florida, USA

13Division of Endocrinology, University of North Carolina School of Medicine, Chapel Hill, North 
Carolina, USA

Correspondence: A Motsinger-Reif (alison_motsinger@ncsu.edu). 

Additional Supporting Information may be found in the online version of this article.

CONFLICT OF INTEREST
The authors have no conflicts of interest to disclose.

AUTHORSHIP CONTRIBUTION
D.M.R., S.S.P., J.R.J., G.A.G., H.N.G., H.L.M., J.B.B., M.J.W., and A.M.R. wrote the paper. D.M.R., A.P., A.G., G.A.G., A.D., 
J.C.M., H.L.M., J.B.B., M.J.W., and A.M.R. designed the research. D.M.R., S.S.P., J.R.J., T.M.H., H.S.S., H.G., A.D., M.J.W., and 
A.M.R. performed the research. D.M.R., S.W.M., S.S.P., A.P., A.S., H.S.S., M.L.M., and J.C.M. analyzed the data.

HHS Public Access
Author manuscript
Clin Pharmacol Ther. Author manuscript; available in PMC 2019 April 01.

Published in final edited form as:
Clin Pharmacol Ther. 2018 April ; 103(4): 712–721. doi:10.1002/cpt.798.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abstract

Individuals with type 2 diabetes (T2D) and dyslipidemia are at an increased risk of cardiovascular 

disease. Fibrates are a class of drugs prescribed to treat dyslipidemia, but variation in response has 

been observed. To evaluate common and rare genetic variants that impact lipid responses to 

fenofibrate in statin-treated patients with T2D, we examined lipid changes in response to 

fenofibrate therapy using a genomewide association study (GWAS). Associations were followed-

up using gene expression studies in mice. Common variants in SMAD3 and IPO11 were 

marginally associated with lipid changes in black subjects (P < 5 × 10−6). Rare variant and gene 

expression changes were assessed using a false discovery rate approach. AKR7A3 and HSD17B13 
were associated with lipid changes in white subjects (q < 0.2). Mice fed fenofibrate displayed 

reductions in Hsd17b13 gene expression (q < 0.1). Associations of variants in SMAD3, IPO11, 

and HSD17B13, with gene expression changes in mice indicate that transforming growth factor-

beta (TGF-β) and NRF2 signaling pathways may influence fenofibrate effects on dyslipidemia in 

patients with T2D.

Dyslipidemia is a significant risk factor for cardiovascular disease (CVD), which is the 

leading cause of death worldwide.1 In the United States, it is estimated that 33.5% of adults 

have high low-density lipoprotein (LDL), and only 48.1% of those individuals are currently 

being treated.2 Individuals with type 2 diabetes (T2D) commonly express a dyslipidemia, 

characterized by high triglycerides, low high-density lipoprotein (HDL), and an increase in 

cholesterol poor, small LDL, and are 2–4 times more likely to develop heart disease than 

nondiabetic individuals.2

Fibrates, a class of medications used to treat individuals with dyslipidemia by activating the 

peroxisome proliferator-activated receptor-alpha (PPARα), increases HDL and lowers 

triglycerides and LDL. Meta-analyses of several large clinical trials indicated that treatment 

with fibrates decrease the number of nonfatal myocardial infarctions, although they did not 

decrease all-cause mortality.3,4 Statins are the first-line treatment to lower LDL to prevent 

CVD.5 Fibrates are generally not recommended to reduce CVD because of a lack of 

demonstrated benefit, although they are recommended for the management of 

hypertriglyceridemia.6 Specifically, fenofibrate is recommended in the context of statin 

therapy because of lower risk of interference with statin metabolism and myopathy.5,6

One goal of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial 

was to compare the benefits and risks of treatment strategies for intensively managing 

dyslipidemia with a combined statin and fenofibrate therapy vs. treatment with statin alone, 

whereas simultaneously targeting normal glycemia and blood pressure vs. standard targets in 

individuals with T2D at high risk for CVD.7,8 The ACCORD trial followed 10,251 

participants for up to 8 years at 77 clinical centers in the United States and Canada. Overall, 

no statistically significant benefits were observed for patients on the combined CVD 

endpoint of time to first heart attack, stroke, or CVD mortality. In addition, there was an 

increase in mortality in participants receiving intensive glycemia control.9–12 Despite the 

lack of overall positive findings, interindividual variation in response to the different 

treatments in ACCORD was observed. Such variation to fibrate lipid response has been 
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observed in a number of studies13–15 and suggests that genetic markers of drug response 

may be important biomarkers for more targeted and personalized treatment strategies.

Previous studies have also investigated the role of genetic variation in fibrate lipid response 

with the majority of studies focused on candidate gene approaches to identify common or 

rare variants associated with differential responses.16–19 Here, we performed genomewide 

and exome-wide genotyping on all consenting individuals in the ACCORD study prescribed 

fenofibrate (n = 1,264). We previously reported a genomewide association study (GWAS) of 

fenofibrate drug response from a meta-analysis of subjects of European ancestry in 

ACCORD and the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study.14 

Here, we expand the analysis of ACCORD participants to include other ethnicities, using 

combined data from a genomewide single nucleotide polymorphism (SNP) array, and an 

exome chip array with >1.2 million combined genotyped SNPs and rare variant analysis for 

SNPs with minor allele frequencies (MAFs) <3% for changes in LDL, HDL, triglycerides 

(TGs), and total cholesterol (TC). Our results indicate interesting and potentially impactful 

associations, and we use mouse studies to test the hypotheses generated by the gene-

mapping analysis. To our knowledge, this is the first GWAS of fenofibrate lipid response in 

multiple ethnicities, and the first exome-wide interrogation of fibrate drug response.

Although the results of the association mapping experiment can point to interesting biology, 

functional follow-up is a crucial step to support association analyses. In the current study, we 

considered the GWAS to be a hypothesis generating exercise to prioritize genes for further 

functional interrogation. We subsequently evaluated the genes identified through association 

analysis in two mouse gene expression studies, and demonstrate that many of the genes 

discovered in the association analysis play a significant role in fibrate drug response.

RESULTS

A total of 1,264, 781, and 138 subjects were included in the common and rare variant 

analyses for all races combined, white, and black cohorts, respectively. Variation in response 

was observed for all phenotypes: HDL, LDL, TC, and TG (Figure 1). Distributions of 

response variation for white and black cohorts individually can be found in Supplementary 

Figures S1 and S2. The mean change in HDL was 3.16 mg/dL (95% confidence interval [CI] 

= 2.78–3.53) for all races combined, 3.11 mg/dL (95% CI = 2.62–3.60) for white subjects 

only, and 2.80 mg/dL (95% CI = 1.73–3.86) for black subjects only. The mean change in 

LDL was −10.64 mg/dL (95% CI = −12.48 to −8.79) for all races combined, −9.31 mg/dL 

(95% CI = −11.68 to −6.95) for white subjects only, and −10.83 mg/dL (95% CI = −16.73 to 

−4.94) for black subjects only. The mean change in TG was −45.23 mg/dL (95% CI = 

−50.27 to −40.28) for all races combined, −52.04 mg/dL (95% CI = −58.31 to −45.78) for 

white subjects only, and −34.43 mg/dL (95% CI = −46.96 to −21.91) for black subjects only. 

The mean change in TC was −16.10 mg/dL (95% CI = −18.27 to −13.92) for all races 

combined, −16.14 mg/dL (95% CI = −18.93 to −13.35) for white subjects only, and −14.51 

mg/dL (95% CI = −21.13 to −7.88) for black subjects only.
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Common variant analysis

A total of 852,426 genotyped and 7,277,412 imputed variants had MAFs >3% and were 

included in the common variant analysis. When all races were combined or white subjects 

were analyzed, no SNPs met the threshold for genomewide significance (P < 5 × 10−8). 

When all races were combined, 8 SNPs associated with TG (genes: BEST3, 

LOC105371270, and RPGRIP1L; Supplementary Figure S3), 34 SNPs associated with TC 

(genes: FGF14, PRRX1, MRPL12, ZNF775, and FBXL7; Supplementary Figure S4), 1 SNP 

associated with HDL (no known genes; Supplementary Figure S5), and 2 SNP associated 

with LDL (genes: FGF14 and MRPL12; Supplementary Figure S6) reached the threshold for 

suggestive significance (P < 1 × 10−6). For white subjects only, 11 SNPs associated with TG 

(genes: LOC105371270 and RPGRIP1L; Supplementary Figure S7), 11 SNPs associated 

with TC (genes: MAU2 and PBX4; Supplementary Figure S8), 0 SNPs associated with HDL 

(Supplementary Figure S9), and 8 SNP associated with LDL (genes: PBX4, SNX7, and 

MAU2; Figure 2) reached the threshold for suggestive significance (P < 1 × 10−6). When 

black subjects were analyzed separately, 6 SNPs were significantly associated (P < 5 × 10−8) 

with TG (genes: LRFN2, LINC00333, and BCL9), and 55 SNPs reached suggestive 

significance (P < 1 × 10−6) with TG (genes: GLIS3, CCDC149, LINGO2, SNHG17, 

LOC105370782, TTLL8, RHOBTB1, and LOC101927866; Supplementary Figure S10). 

Seven SNPs were significantly associated (P < 5 × 10−8) with TC (genes: CLN8 and 

BICC1), and 108 SNPs reached suggestive significance (P < 1 × 10−6) with TC (genes: 

ST6GALNAC3, LOC105372744, SCGN, LOC102724378, NRXN1, LCT, LOC102724680, 

RBM19, MCM6, DARS, TRIOBP, DARS-AS1, PEX5L, LOC102724680, and NLGN1; 

Supplementary Figure S11). One SNP was significantly associated (P < 5 × 10−8) with HDL 

(gene: MSH3), and 8 SNPs reached suggestive significance (P < 1 × 10−6) with HDL (genes: 

TGFBR3, LOC105373670, STX8, and CELSR1; Supplementary Figure S12). Last, 5 SNPs 

associated with LDL (genes: BICC1, FOXP1, and PEX5L; Supplementary Figure S13) 

reached the threshold for suggestive significance (P < 1 × 10−6). Lead SNPs associated with 

HDL, LDL, TC, and TG (P < 1 × 10−6) are presented in Tables 1 and 2 and Supplementary 

Tables S14 and S15. None of the associations reported above were associated with placebo 

treatment.

Rare variant analysis

A total of 17,081 genes were tested for association with TG, TC, HDL, or LDL in all races 

combined, white subjects only and black subjects only with rare variants (MAF ≤0.03). 

When all races were combined, DCUN1D4 and DUSP3 were significantly associated (q < 

0.2) with TG. Additionally, when only white subjects were included, HARS2 was 

significantly associated with TG and HDL, HSD17B13 was significantly associated with TG 

and HDL, AKR7A3 was significantly associated with LDL and TC, and MARCH3 was 

significantly associated with TG (q < 0.2). Last, POGZ was significantly associated with TG 

in black subjects only (q < 0.2; Table 3). None of the genes reported above were associated 

with subjects treated with placebo (q = 1; Table 3).
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Functional validation

SNPs in genes in the common variant analysis with P < 1 × 10−5 or q < 0.2 in the rare 

variant analysis were compared to gene expression results in wild-type C57BL/6J mice fed 

vehicle control or fenofibrate for replication20 (REP1). Fifty-seven genes overlapped 

between the two studies, and 10 were significant in REP1 (q < 0.3; Mcm6, Smad3, 

Dcun1d4, Hecw2, Mipep, Ipo11, R3hdm1, Foxp1, Stx8, and Mapk10; Table 4). These genes 

and 3 additional genes that met our threshold for inclusion in the replication study but were 

not available in the previously published REP1 study (Hsd17b13, Pbx4, and Cyp4f39) were 

subsequently tested in REP2, a follow-up gene expression study in mice to confirm the 

changes in response to fenofibrate vs. vehicle control in liver, adipose, and skeletal muscle. 

Cyp4f39 was tested in REP2 because it is the murine homologue of CYP4F22 in humans, 

which was marginally significant for change in HDL in ACCORD (P < 1 × 10−5). All genes, 

except Mipep and Cyp4f39, were significantly changed in liver tissue in REP2 (q < 0.3), 

however, the direction of the effect was not always consistent with REP1 (Table 4). Genes 

Smad3, Ipo11, and Foxp1 were significantly decreased in both REP1 and REP2 and were 

considered to have successfully replicated the GWAS findings. Hsd17b13 and Pbx4 were 

significantly decreased in liver tissue in REP2 (q < 0.3; Table 4). REP1 was published 

previously and did not include Hsd17b13 or Pbx4, so these genes were not available for 

replication in REP1. However, both of these genes were tested in REP2. There were no 

significant results for gene expression tested in adipose or skeletal muscle (Supplementary 

Table S16).

DISCUSSION

Dyslipidemia continues to be a widespread disorder with significant health impacts 

worldwide. Although recent studies, including ACCORD, have raised questions concerning 

the role of additional lipid-lowering therapy in the context of statin to reduce cardiovascular 

events,9,21 dyslipidemia remains a significant risk factor for CVD and fibrates are commonly 

prescribed.22 In addition, it is important to understand the variation in response to 

fenofibrate in people with T2D who are at an especially high risk of developing an adverse 

cardiovascular event (e.g., stroke and myocardial infarction). We previously published a 

meta-analysis combining the results of the fenofibrate lipid response in the GOLDN cohort 

with white subjects in ACCORD, and found significant associations with SNPs in PBX4 and 

change in LDL in response to fenofibrate treatment.14 Here, we expand the previous study to 

include all races in ACCORD and black subjects only. In addition, we conduct a rare variant 

analysis for changes in HDL, LDL, TC, and TG and follow-up both common and rare 

variant GWAS findings in two studies of mice exposed to fenofibrate. Importantly, these 

functional validation studies highlight novel common and rare variants that contribute to 

variation in fenofibrate lipid response in individuals with T2D.

Combining all subjects that met our inclusion criteria in ACCORD resulted in 1,264 subjects 

available for analysis. Cytochrome P450 family 4 subfamily F member 22 (CYP4F22), was 

marginally associated with changes in HDL (P = 2.50 × 10−6, β = −0.023). CYP4F22 is part 

of the 12(R)-lipoxygenase pathway, and has been shown to produce potent PPARα agonists,
23,24 which makes SNPs in CYP4F22 biologically plausible for causing variation in HDL, 
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because PPARα is the therapeutic target of fenofibrate. Although the biological role of 

CYP4F22 is a compelling candidate for fibrate drug response, Cyp4f39, the murine 

homologue of CYP4F22, did not replicate in REP2, suggesting that the GWAS finding may 

be a false-positive, the replication may have failed due to species differences or gene 

expression may not be the appropriate test for CYP4F22 response to fenofibrate exposure.

In black subjects only, lead SNP rs142923802, located in importin 11 (IPO11) was also 

marginally associated with change in LDL (P = 1.52 × 10−6, β = 0.095). Gene expression of 

Ipo11 was significantly decreased in both REP1 (q = 0.24) and in the liver in REP2 (q = 

0.15). IPO11 codes the nuclear import receptor, importin 11, and in conjunction with 

ubiquitin-conjugating enzyme, UBE2E3, restricts KEAP1, which is a major suppressor of 

Nrf2.25 Notably, Nrf2 in mice has been shown to interact with lipogenic genes and to 

regulate hepatic lipid homeostasis.26 Moreover, Nrf2-null mice displayed reduced liver 

weight, decreased fatty acid content of hepatic triacylglycerol, and increases in serum HDL, 

and very low-density lipoprotein triglyceride. Finally, PPARγ and other genes were found to 

be direct targets of Nrf2 activation, demonstrating that Nrf2, regulated by KEAP1 and 

IPO11 in humans, modulate lipid homeostasis. Rare variants in Aldo-keto reductase 7A3, 

AKR7A3, were significantly associated with LDL in white subjects only (q = 0.08). The 

AKR family of enzymes catalyze a wide range of endogenous and exogenous chemicals, 

including glucose, steroid hormones, and lipids. Akr7a3 is transcriptionally regulated by 

Nrf2 in mice, which, in addition to IPO11 results discussed above, further supports the 

implication of Nrf2 signaling in regulating fenofibrate drug response.27,28 Previous studies 

have demonstrated that Nrf2 signaling is activated by fenofibrate through Keap1 in mice, 

and may be responsible for the protective effect of fenofibrate for oxidative stress.29 Here, 

we present evidence that SNPs located in genes in the Nrf2 signaling pathway may play an 

important role in regulating the change in LDL upon fenofibrate treatment.

In black subjects, rs12912310, located in the gene, mothers against decapentaplegic-3 

(SMAD3), was marginally associated with LDL (P = 5.75 × 10−6) and TC (P = 1.88 × 10−6). 

Smad3 expression was significantly decreased in response to fenofibrate in both REP1 (q = 

0.09) and REP2 (q = 0.19). SMAD3 is a member of the SMAD family of genes and is an 

intracellular signal transducer and transcriptional modulator activated by transforming 

growth factor-beta (TGF-β), and binds to the promoter region of many genes regulated by 

TGF-β and activates them by forming a SMAD3/SMAD4 complex.30–32 In a study by Tan 

et al.,31 SMAD3 knockout mice had lower plasma free fatty acid and glycerol, and reduced 

adiposity. The same study demonstrated that SMAD3 knockout mice had altered regulation 

of PPARγ and PPARβ. Furthermore, PPARα, the therapeutic target of fenofibrate, has been 

shown to inhibit TGF-β, which regulates SMAD2, SMAD3, and SMAD4 transcription 

factors.33 Pathways involving PPARα, TGF-β, and SMAD transcription factors are clearly 

convoluted and more research is needed to elucidate these relationships, and these results 

suggest that SMAD3 may play a role in fenofibrate lipid response. Furthermore, in black 

subjects, SNP rs1653969 located in FOXP1, was associated with a poorer LDL response to 

fenofibrate (P = 9.18 × 10−7). FOXP1 is a member of the forkhead box class of genes, which 

is a large family of transcription factors. Little is known about the role of FOXP1, but other 

FOX transcription factors (e.g., FOXO3a) have been shown to be impacted by fenofibrate 

treatment.34 Importantly, expression of Foxp1 was significantly decreased in both REP1 and 
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REP2 analysis, and additional research is needed to further elucidate the role of FOXP1 in 

fenofibrate lipid response.

When the cohort was limited to white subjects only, there was a significant association 

between LDL and the lead SNP, rs140229040, which is located in the PBX homeobox 4 

(PBX4) gene (P = 3.66 × 10−7). SNPs in this gene are part of a large region in linkage 

disequilibrium, and this region has been previously identified as being associated with LDL 

cholesterol.35–37 We reported this finding previously with a meta-analysis using the GOLDN 

cohort.12 This gene was not available for follow-up in REP1 but was significantly decreased 

in liver tissue of mice exposed to fenofibrate in REP2 (q = 0.12). Interestingly, functional 

validation in the study by Holmen et al.38 identified TM6SF2, which is in high linkage 

disequilibrium with PBX4, as being the gene functionally responsible for regulating LDL.

We also tested rare variants for associations with LDL, HDL, TG, and TC. Six unique genes 

(POGZ, HSD17B13, HARS2, DCUN1D4, DUSP3, and MARCH3) were significantly 

associated with TG. Gene expression changes for DCUN1D4 was significantly altered in 

both REP1 and REP2, but with opposing directions (q < 0.3). Very little is known about the 

function of DCUN1D4, with studies mostly conducted in C. elegans and S. cerevisiae.39 In 

addition to TG, HSD17B13 was also associated with change in HDL in white subjects only 

(q < 0.2). Importantly, rare genetic variants in hydroxysteroid 17-beta dehydrogenase 3 

(HSD17B13) were significantly associated with TG and HDL in white subjects (q < 0.05) 

and mice fed fenofibrate displayed a significant reduction in Hsd17b13 gene expression 

when administered fenofibrate vs. vehicle control in REP2 (q = 5.93 × 10−4; Supplementary 

Table S6). HSD17B13, an isoform of 17 beta-hydroxysteroid dehydrogenase (17βHSD), is 

highly expressed in the testis, and is also expressed in the liver.40 However, other isoforms of 

17βHSD are expressed in many tissues. Unlike many of the other isoforms of 17βHSD, only 

recently has the role of 17βHSD13 become clear. Human fatty liver samples have shown that 

17βHSD13 is upregulated in lipid droplet fractions.41 Furthermore, 17βHSD13 was 

significantly upregulated in the livers of both diabetic mice and mice fed high-fat diets, 

suggesting that 17βHSD13 may play an important role in the pathogenesis of fatty liver in 

both mice and in humans and may also be relevant in diabetes. In the same study, 

overexpression of Hsd17b13 in C57BL/6 mouse livers increased lipogenesis and lipid 

accumulation and overexpression of 17βHSD13 increased lipid droplet formation in human 

cell lines.41 Interestingly, in the mouse model, overexpression of Hsd17b13 did not increase 

plasma TG or TC levels.41 Although the results presented by Su et al.41 demonstrate a clear 

role of 17βHSD13 in nonalcoholic fatty liver disease, the results presented here mark the 

first time that rare variant SNPs in 17βHSD13 have been shown to impact the lipid lowering 

effects of fenofibrate.41 Additional research is needed to fully elucidate the relationship 

between 17βHSD13 and fenofibrate lipid response. It is possible that 17βHSD13 may 

become an important biomarker in precision medicine initiatives for more targeted treatment 

of fenofibrate.

These findings occurred in subjects with T2D treated with statins, which is more clinically 

representative than fenofibrate monotherapy, because fibrates are commonly prescribed with 

statin therapy.42 Furthermore, these associations were not observed in subjects treated with 

placebo and statin, lending support for these associations with fenofibrate drug response. 
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Although several GWAS findings were replicated in two functional studies, those studies 

were conducted using a mouse model that may not be applicable to human subjects, and not 

all genes with GWAS associations here were available for gene expression follow-up. 

Additionally, gene expression may not be the most relevant mechanism, as numerous ways 

exist for SNPs to impact drug response. Future studies will require larger cohorts and further 

functional work in relevant tissues to elucidate the pathways in which fenofibrate and 

PPARα alter lipid concentrations.

We have identified novel common variants in black subjects located in several genes (e.g., 

SMAD3 and IPO11) and rare variants (e.g., HSD17B13) that explain lipid variation in 

response to fenofibrate treatment in individuals with T2D treated with statins. These findings 

were further supported by changes in gene expression in mice and provide novel findings 

that explain variation in fenofibrate lipid response in individuals with T2D.

MATERIALS AND METHODS

Study participants

The ACCORD trial (clinicaltrials.gov-NCT00000620) was a double 2 × 2 factorial design, 

consisting of 10,251 recruited subjects with T2D and either a history of CVD or at least two 

known risk factors for CVD, such as documented atherosclerosis, albuminuria, dyslipidemia, 

hypertension, smoking, or obesity.7 Subjects were randomized to either intensive or standard 

glycemia treatment strategies (targeting HbA1c <6.0 vs. HbA1c between 7.0 and 7.9). Over 

80% of subjects in the ACCORD study consented to being genotyped. There were 5,518 

subjects who were further randomized to intensive vs. standard lipid management 

(fenofibrate vs. placebo, with all subjects on simvastatin). Each ACCORD participant 

provided written informed consent using procedures reviewed and approved by each clinical 

site’s local institutional review board and based on a template provided by the study group 

that was approved and subsequently centrally monitored by the Coordinating Center and the 

National Heart, Lung, and Blood Institute (IRB: FWA00003429). Entry criteria and 

additional information about the lipid subtrial and patient selection are described in the 

Supplementary Material online. As in the prior ACCORD and GOLDN meta-analyses, 

fenofibrate lipid response was calculated as:

where a is the pretreatment measurement of HDL, LDL, TC, or TG, and b is the on-

treatment measurement of HDL, LDL, TC, or TG. After subsetting patients from the lipid 

subtrial based on consent, genotyping, drug response criteria, and quality control (see below) 

of DNAs extracted from these samples, the population for the current study included 1,264 

subjects. These subjects included individuals that self-identified as white, black, Hispanic, 

Asian, and other.
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Genotyping and quality control

Genomic DNA extraction and cell preparations are described in the Supplementary Material. 

Genomewide genotyping was performed in two independent laboratories on different 

platforms: 6,085 unique samples, composed of those ACCORD participants who consented 

to genetic studies conducted by any investigator, were genotyped at the University of 

Virginia on Illumina HumanOmniExpressExome-8 version 1.0 chips (set 1)43; 8,174 unique 

samples, including the above 6,085 samples plus 2,089 samples from ACCORD participants 

who consented to genetic studies only if conducted by ACCORD investigators were 

genotyped at the University of North Carolina on Affymetrix Axiom Biobank1 chips (set 2). 

Additional information regarding the merging of set 1 and set 2, imputation, and quality 

control can be found in the Supplementary Material.

Covariate selection

Here, we take a combined approach to variable selection to address potential confounding 

variables. A substantial proportion of the cohort was taking lipid-lowering medications at the 

time baseline lipid measurements were taken (e.g., 63% were on a statin prior to entering the 

trial). Statin, additional concomitant medications, and nondrug covariates (e.g., age, gender, 

body mass index, and smoking status) were incorporated into the model, as previously 

described in Graham & Rotroff et al.44 and is described in the Supplementary Material. A 

full list of covariate names and descriptions can be found in Supplementary Table S1.

Common variant analysis

Association between a phenotype, selected, and forced covariates, and a single common 

variant (MAF >3%) was tested with an additive genetic model using linear regression in the 

PLINK software for genotyped variants.45 Imputed variants were tested using a linear 

regression model in the statistical programming language, R, where gi=pi(Aa) + 2pi(aa) is 

the dosage score computed from the posterior probabilities for genotypes Aa and aa.45,46 For 

SNPs that were only genotyped in set 1 subjects and were imputed in set 2 subjects, 

association tests results were combined by meta-analysis using PLINK.45 Tables and figures 

specify whether each SNP association was genotyped, imputed, or meta-analyzed. The 

results from the common variant tests were considered statistically significant based on a P < 

5 × 10−8 and P < 1 × 10−6 was considered the threshold for suggestive significance. To 

maximize the likelihood of finding genes expression altered by fenofibrate exposure, a more 

liberal threshold of P < 1 × 10−5 was used only for functional validation, as described below. 

Additional information regarding the common variant analysis can be found in the 

Supplementary Material.

Rare variant analysis

We implemented a suite of five rare variant tests that can be divided into two classes, burden 

and nonburden approaches, as previously described.47 Burden tests collapse a set of rare 

variants from a gene into a single variable, which is then tested for association with a 

phenotype. However, simple burden tests do not account for the direction (positive or 

negative association) of a rare variant effect.48 One nonburden rare variant test that allows 

for different directions and magnitudes of effects for each variant is the sequence kernel 

Rotroff et al. Page 9

Clin Pharmacol Ther. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



association test (SKAT).48 The balance between SKAT and burden tests was addressed using 

the optimal test, SKAT-O, which aims to optimize the combination of the two approaches. 

Gene annotations were performed using Ensemble (GRCh37.p13), which mapped the 

232,678 rare variants (MAF ≤3%) genotyped in set 1 subjects to 17,081 total genes. 

Subsequently, the combined P value was corrected for multiple comparisons with an false 

discovery rate (FDR) approach using the R package, qvalue (version 1.36.0) and q < 0.2 was 

considered to be statistically significant.49 Additional details regarding the rare variant 

analysis implemented here can be found in Marvel & Rotroff et al.47 and the Supplementary 

Material.

Placebo analysis

Study protocols for those receiving placebo in the lipid subtrial of ACCORD were the same 

as the fibrate arm of the trial, except that placebo was administered instead of fenofibrate. To 

confirm that the results were associated with fibrate and not placebo or statin, we conducted 

common and rare variant associations using the same analysis workflow, covariates, and 

models as described above for all races combined (n = 1,336), white (n = 908), and black 

subjects (n = 186). The results from the placebo analysis are included along with the 

fenofibrate results in Tables (1–3) and Supplementary Tables S14 and S15.

Mouse gene expression validation

We investigated gene expression changes in wild-type C57BL/6J mice administered 

fenofibrate compared with mice administered vehicle control, as described by Liu et al.20 to 

provide additional validation for common and rare variant associations with fenofibrate lipid 

response identified (REP1). To maximize the likelihood of finding genes with expression 

changes due to fenofibrate exposure, we expanded the genes chosen for evaluation to include 

those with common variant associations P < 1 × 10−5, where the variants were annotated as 

being in genes according to the National Center for Biotechnology Information database 

using the rsnps package,50 and genes with q < 0.2 in the rare variant tests. An additional 

follow-up replication study was conducted at the University of Kentucky (REP2) to try and 

further validate the findings in REP1 and include additional genes identified in the 

ACCORD analysis that were not available in the previously published data in REP1. 

Additional details regarding the mouse gene expression methods can be found in the 

Supplementary Material. Furthermore, the gene expression results of Rab27b, a gene 

identified in an interim analysis of only set 2 data, and was not significant after merging set 

1 and set 2 data (q > 0.2) is presented in the Supplementary Material.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

☑ Fibrates are a class of drugs commonly prescribed to lower serum lipid levels; 

however, individual variation in response to fenofibrates has been observed and 

drivers of this variation are not well understood.

WHAT QUESTION DID THIS STUDY ADDRESS?

☑ Here, we evaluate the association of common and rare genetic variants with 

variation in response to fenofibrate treatment in individuals with T2D.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

☑ We demonstrate novel associations of common genetic variants in SMAD3 and 

IPO11 genes in black subjects, and rare variants in AKR7A3 and HSD17B13 in 

white subjects were associated with variation in fibrate lipid response. We then 

support these findings using gene expression in a mouse model.

HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE

☑ Our findings highlight genetic variants in TGF-β and NRF2 signaling pathways 

that may influence fenofibrate effects on dyslipidemia in individuals with T2D. 

This insight could help to identify patients for more targeted treatment strategies 

or elucidate novel therapeutic targets.
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Figure 1. 
Distributions of fenofibrate response on lipid measurements in subjects of all combined 

races (N = 1264). (a) Log-ratio of the change in high-density lipoprotein (HDL; mg/dL). (b) 

Log-ratio of the change in low-density lipoprotein (LDL; mg/dL). (c) Log-ratio of the 

change in triglycerides (mg/dL). (d) Log-ratio of the change in total cholesterol (mg/dL).
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Figure 2. 
Manhattan plot of single-nucleotide polymorphism associations with change in low-density 

lipoprotein in white subjects only. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 3. 
Gene expression in mice exposed to fenofibrate vs. vehicle control in (a) adipose tissue, (b) 

skeletal muscle, and (c) liver tissue. ***False discovery rate (FDR) P value < 0.01; **FDR P 
value < 0.1; *FDR P value < 0.2. [Color figure can be viewed at wileyonlinelibrary.com]
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