15 research outputs found

    The power of monitoring stellar orbits

    Full text link
    The center of the Milky Way hosts a massive black hole. The observational evidence for its existence is overwhelming. The compact radio source Sgr A* has been associated with a black hole since its discovery. In the last decade, high-resolution, near-infrared measurements of individual stellar orbits in the innermost region of the Galactic Center have shown that at the position of Sgr A* a highly concentrated mass of 4 x 10^6 M_sun is located. Assuming that general relativity is correct, the conclusion that Sgr A* is a massive black hole is inevitable. Without doubt this is the most important application of stellar orbits in the Galactic Center. Here, we discuss the possibilities going beyond the mass measurement offered by monitoring these orbits. They are an extremely useful tool for many scientific questions, such as a geometric distance estimate to the Galactic Center or the puzzle, how these stars reached their current orbits. Future improvements in the instrumentation will open up the route to testing relativistic effects in the gravitational potential of the black hole, allowing to take full advantage of this unique laboratory for celestial mechanics.Comment: Proceedings of the Galactic Center Workshop 2009, Shangha

    The orbit of the star S2 around SgrA* from VLT and Keck data

    Full text link
    Two recent papers (Ghez et al. 2008, Gillessen et al. 2009) have estimated the mass of and the distance to the massive black hole in the center of the Milky Way using stellar orbits. The two astrometric data sets are independent and yielded consistent results, even though the measured positions do not match when simply overplotting the two sets. In this letter we show that the two sets can be brought to excellent agreement with each other when allowing for a small offset in the definition of the reference frame of the two data sets. The required offsets in the coordinates and velocities of the origin of the reference frames are consistent with the uncertainties given in Ghez et al. (2008). The so combined data set allows for a moderate improvement of the statistical errors of mass of and distance to Sgr A*, but the overall accuracies of these numbers are dominated by systematic errors and the long-term calibration of the reference frame. We obtain R0 = 8.28 +- 0.15(stat) +- 0.29(sys) kpc and M(MBH) = 4.30 +- 0.20(stat) +- 0.30(sys) x 10^6 Msun as best estimates from a multi-star fit.Comment: submitted to ApJ

    The two states of Sgr A* in the near-infrared: bright episodic flares on top of low-level continuous variability

    Full text link
    In this paper we examine properties of the variable source Sgr A* in the near-infrared (NIR) using a very extensive Ks-band data set from NACO/VLT observations taken 2004 to 2009. We investigate the variability of Sgr A* with two different photometric methods and analyze its flux distribution. We find Sgr A* is continuously emitting and continuously variable in the near-infrared, with some variability occurring on timescales as long as weeks. The flux distribution can be described by a lognormal distribution at low intrinsic fluxes (<~5 mJy, dereddened with A_{Ks}=2.5). The lognormal distribution has a median flux of approximately 1.1 mJy, but above 5 mJy the flux distribution is significantly flatter (high flux events are more common) than expected for the extrapolation of the lognormal distribution to high fluxes. We make a general identification of the low level emission above 5 mJy as flaring emission and of the low level emission as the quiescent state. We also report here the brightest Ks-band flare ever observed (from August 5th, 2008) which reached an intrinsic Ks-band flux of 27.5 mJy (m_{Ks}=13.5). This flare was a factor 27 increase over the median flux of Sgr A*, close to double the brightness of the star S2, and 40% brighter than the next brightest flare ever observed from Sgr~A*.Comment: 14 pages, 6 figures, accepted for publication in Ap

    What is limiting near-infrared astrometry in the Galactic Center?

    Full text link
    We systematically investigate the error sources for high-precision astrometry from adaptive optics based near-infrared imaging data. We focus on the application in the crowded stellar field in the Galactic Center. We show that at the level of <=100 micro-arcseconds a number of effects are limiting the accuracy. Most important are the imperfectly subtracted seeing halos of neighboring stars, residual image distortions and unrecognized confusion of the target source with fainter sources in the background. Further contributors to the error budget are the uncertainty in estimating the point spread function, the signal-to-noise ratio induced statistical uncertainty, coordinate transformation errors, the chromaticity of refraction in Earth's atmosphere, the post adaptive optics differential tilt jitter and anisoplanatism. For stars as bright as mK=14, residual image distortions limit the astrometry, for fainter stars the limitation is set by the seeing halos of the surrounding stars. In order to improve the astrometry substantially at the current generation of telescopes, an adaptive optics system with high performance and weak seeing halos over a relatively small field (r<=3") is suited best. Furthermore, techniques to estimate or reconstruct the seeing halo could be promising.Comment: accepted by MNRAS, 13 pages, 14 figure

    The Milky Way Nuclear Star Cluster

    Full text link
    In the center of the Milky Way, as well as in many other galaxies, a compact star cluster around a very massive black hole is observed. One of the possible explanations for the formation of such Nuclear Star Clusters is based on the 'merging' of globular clusters in the inner galactic potential well. By mean of sophisticated N-body simulations, we checked the validity of this hypothesis and found that it may actually has been the one leading to the formation of the Milky Way Nuclear Star Cluster.Comment: 4 pages, 2 figures, proceedings of "Stellar Clusters and Associations - A RIA workshop on GAIA", 23-27 May 2011, Granada, Spai

    A gas cloud on its way towards the super-massive black hole in the Galactic Centre

    Full text link
    Measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* at the Galactic Centre is a black hole four million times the mass of the Sun. With the exception of modest X-ray and infrared flares, Sgr A* is surprisingly faint, suggesting that the accretion rate and radiation efficiency near the event horizon are currently very low. Here we report the presence of a dense gas cloud approximately three times the mass of Earth that is falling into the accretion zone of Sgr A*. Our observations tightly constrain the cloud's orbit to be highly eccentric, with an innermost radius of approach of only ~3,100 times the event horizon that will be reached in 2013. Over the past three years the cloud has begun to disrupt, probably mainly through tidal shearing arising from the black hole's gravitational force. The cloud's dynamic evolution and radiation in the next few years will probe the properties of the accretion flow and the feeding processes of the super-massive black hole. The kilo-electronvolt X-ray emission of Sgr A* may brighten significantly when the cloud reaches pericentre. There may also be a giant radiation flare several years from now if the cloud breaks up and its fragments feed gas into the central accretion zone.Comment: in press at Natur

    Evidence for Warped Disks of Young Stars in the Galactic Center

    Get PDF
    The central parsec around the super-massive black hole in the Galactic Center hosts more than 100 young and massive stars. Outside the central cusp (R~1") the majority of these O and Wolf-Rayet (WR) stars reside in a main clockwise system, plus a second, less prominent disk or streamer system at large angles with respect to the main system. Here we present the results from new observations of the Galactic Center with the AO-assisted near-infrared imager NACO and the integral field spectrograph SINFONI on the ESO/VLT. These include the detection of 27 new reliably measured WR/O stars in the central 12" and improved measurements of 63 previously detected stars, with proper motion uncertainties reduced by a factor of four compared to our earlier work. We develop a detailed statistical analysis of their orbital properties and orientations. Half of the WR/O stars are compatible with being members of a clockwise rotating system. The rotation axis of this system shows a strong transition as a function of the projected distance from SgrA*. The main clockwise system either is either a strongly warped single disk with a thickness of about 10 degrees, or consists of a series of streamers with significant radial variation in their orbital planes. 11 out of 61 clockwise moving stars have an angular separation of more than 30 degrees from the clockwise system. The mean eccentricity of the clockwise system is 0.36+/-0.06. The distribution of the counter-clockwise WR/O star is not isotropic at the 98% confidence level. It is compatible with a coherent structure such as stellar filaments, streams, small clusters or possibly a disk in a dissolving state. The observed disk warp and the steep surface density distribution favor in situ star formation in gaseous accretion disks as the origin of the young stars.Comment: ApJ in pres

    GC-IRS13E-a puzzling association of three early-type stars

    No full text
    We present a detailed analysis of high resolution near-infrared imaging and spectroscopy of the potential star cluster IRS13E very close to the massive black hole in the Galactic Center. We detect 19 objects in IRS13E from Ks-band images, 15 of which are also detected reliably in H-band. We derive consistent proper motions for these objects from the two bands. Most objects share a similar westward proper motion. We characterize the objects using spectroscopy (1.45 to 2.45 micrometer) and (narrow-band) imaging from H- (1.66 mircrometer) to L'-band (3.80 micrometer). Nine of the objects detected in both Ks- and H-band are very red, and we find that they are all consistent with being warm dust clumps. The dust emission may be caused by the colliding winds of the two Wolf-Rayet stars in the cluster. Three of the six detected stars do not share the motion or spectral properties of the three bright stars. This leaves only the three bright, early-type stars as potential cluster members. It is unlikely that these stars are a chance configuration. Assuming the presence of an IMBH, a mass of about 14000 solar masses follows from the velocities and positions of these three stars. However, our acceleration limits make such an IMBH nearly as unlikely as a chance occurrence of such a star association. Furthermore, there is no variable X-ray source in IRS13E despite the high density of dust and gas. Therefore, we conclude that is unlikely that IRS13E hosts a black hole massive enough to bind the three stars.Comment: 19 pages, 14 figures, 2 tables, accepted for publication in Astrophysical Journa

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include

    Flares from Sgr A* and their Emission Mechanism

    No full text
    International audienceWe summarize recent observations and modeling of the brightest Sgr A* flare to be observed simultaneously in (near)-infrared and X-rays to date. Trying to explain the spectral characteristics of this flare through inverse Compton mechanisms implies physical parameters that are unrealistic for Sgr A*. Instead, a "cooling break" synchrotron model provides a more feasible explanation for the X-ray emission. In a magnetic field of about 5-30 Gauss the X-ray emitting electrons cool very quickly on the typical dynamical timescale while the NIR-emitting electrons cool more slowly. This produces a spectral break in the model between NIR and X-ray wavelengths that can explain the differences in the observed spectral indices
    corecore