177 research outputs found
Recommended from our members
Effects of Chromium(VI) and Chromium(III) on Desulfovibrio vulgaris Cells
Desulfovibrio vulgaris ATCC 29579 is a well studied sulfate reducer that has known capabilities of reducing heavy metals and radionuclides, like chromium and uranium. Cultures grown in a defined medium (i.e. LS4D) had a lag period of approximately 40 h when exposed to 50 μMof Cr(VI). Substrate analysis revealed that although chromium is reduced within the first 5 h, growth does not resume for another 35 h. During this time, small amounts of lactate are still utilized but the reduction of sulfate does not occur. Sulfate reduction occurs concurrently with the accumulation of acetate approximately 40 h after inoculation, when growth resumes. Similar amounts of hydrogen are produced during this time compared to hydrogen production by cells not exposed to Cr(VI); therefore an accumulation of hydrogen cannot account for the utilization of lactate. There is a significant decrease in the carbohydrate to protein ratio at approximately 25 h, and this result indicated that lactate is not converted to glycogen. Most probable number analysis indicated that cell viability decreased steadily after inoculation and reached approximately 6 x 104 cells/ml 20 h post-chromium exposure. Regeneration of reducing conditions during chromium exposure does not induce growth and in fact may make the growth conditions even more unfavorable. This result suggested that an increase in Eh was not solely responsible for the decline in viability. Cell pellets collected 10 h after chromium-exposure were unable to resume growth when suspended into fresh medium. Supernatants from these pellets were able to support cell growth upon re- inoculation. D. vulgaris cells treated with a non-dose dependent addition of ascorbate at the same time of Cr(VI) addition did not enter a lag period. Ascorbate added 3 h post-Cr(VI) exposure did not prevent the growth lag. These results indicated that Desulfovibrio utilized lactate to reduce Cr(VI) without the reduction of sulfate, that the decline in cell viability and cell growth was most likely a consequence of Cr(III), and that an organic ligand could protect D. vulgaris cells from Cr(III) toxicity. Lactate consumption decoupled from sulfate reduction in the presence of Cr(VI) could provide organic carbon for organo- Cr(III) complexes
Racial environment and political participation
This research addresses the determinants of mass participation by developing
a model of how the racial environment influences mass participation in the United
States. Prior literature on this research question presents two competing expectations.
The power-threat hypothesis predicts that a larger size of different racial groups in
local areas increases citizen participation because of more intensive interracial con-
flicts, while the relational goods hypothesis predicts that a larger size of different racial
groups decreases participation because of less frequent interaction with other in-group
members. Both hypotheses, however, are derived from rather weak theoretical expectations,
and neither is consistently supported in empirical analyses. This research
offers a solution to this puzzle by arguing that economic and political characteristics of
local areas determine how the racial composition influences mass participation. Local
economic and political competition is expected to structure the nature of interracial
and intraracial relations and therefore influence the utility calculation associated with
political participation. I hypothesize that the power-threat effect on citizen participation
is observed only when the degree of economic or political competition is high,
while the relational goods effect is observed only when the degree of economic or
political competition is low. Empirical analysis using Verba, Schlozman, and Brady’s
Citizen Participation Study offers supportive evidence for my hypotheses. This research
offers the first theoretically-motivated, rigorous analysis and evidence of the impact of immediate racial environment on individuals’ participation
FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium
Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium.
Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression.
Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2.
Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK
Synthesis and anticancer activity evaluation of some new 1,2,3,5-tetrazine derivatives attached to benzothiazole moiety
A series of novel tetrazine derivatives, containing benzothiazole framework, were prepared during the
coupling reactions of some diazotized 2-aminobenzo[d]thiazole derivatives with p-acetaminophen. Their
structures were elucidated based on NMR and MS spectrometry. The anticancer activity and the safety of the
synthesized compounds along with the entire precursors were assessed against three human cancer cell lines
and a normal cell line. All the synthesized compounds showed selective cytotoxic activity against the cancer
cell lines used in comparison to the normal Vero cell line. Their IC50 values varied from 2.02 to 171.67 μM.The Cameroonian Ministry of Higher Education special research allocation, the German Academic Exchange Service (DAAD) and the University of Pretoria.https://www.arkat-usa.org/arkivoc-journalam2023Paraclinical Science
A new flowering time gene on wheat chromosome 3B characterization and genetic mapping
Genes that alter disease risk only in combination with certain environmental exposures may not be detected in genetic association analysis. By using methods accounting for gene-environment (G x E) interaction, we aimed to identify novel genetic loci associated with breast cancer risk. Up to 34,475 cases and 34,786 controls of European ancestry from up to 23 studies in the Breast Cancer Association Consortium were included. Overall, 71,527 single nucleotide polymorphisms (SNPs), enriched for association with breast cancer, were tested for interaction with 10 environmental risk factors using three recently proposed hybrid methods and a joint test of association and interaction. Analyses were adjusted for age, study, population stratification, and confounding factors as applicable. Three SNPs in two independent loci showed statistically significant association: SNPs rs10483028 and rs2242714 in perfect linkage disequilibrium on chromosome 21 and rs12197388 in ARID1B on chromosome 6. While rs12197388 was identified using the joint test with parity and with age at menarche (P-values = 3 x 10(-07)), the variants on chromosome 21 q22.12, which showed interaction with adult body mass index (BMI) in 8,891 postmenopausal women, were identified by all methods applied. SNP rs10483028 was associated with breast cancer in women with a BMI below 25 kg/m(2) (OR = 1.26, 95% CI 1.15-1.38) but not in women with a BMI of 30 kg/m(2) or higher (OR = 0.89, 95% CI 0.72-1.11, P for interaction = 3.2 x 10(-05)). Our findings confirm comparable power of the recent methods for detecting G x E interaction and the utility of using G x E interaction analyses to identify new susceptibility loci
Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1
High-risk mutations in several genes predispose to both colorectal cancer (CRC) and endometrial cancer (EC). We therefore hypothesised that some lower-risk genetic variants might also predispose to both CRC and EC. Using CRC and EC genome-wide association series, totalling 13,265 cancer cases and 40,245 controls, we found that the protective allele [G] at one previously-identified CRC polymorphism, rs2736100 near TERT, was associated with EC risk (odds ratio (OR) = 1.08, P = 0.000167); this polymorphism influences the risk of several other cancers. A further CRC polymorphism near TERC also showed evidence of association with EC (OR = 0.92; P = 0.03). Overall, however, there was no good evidence that the set of CRC polymorphisms was associated with EC risk, and neither of two previously-reported EC polymorphisms was associated with CRC risk. A combined analysis revealed one genome-wide significant polymorphism, rs3184504, on chromosome 12q24 (OR = 1.10, P = 7.23 × 10−9) with shared effects on CRC and EC risk. This polymorphism, a missense variant in the gene SH2B3, is also associated with haematological and autoimmune disorders, suggesting that it influences cancer risk through the immune response. Another polymorphism, rs12970291 near gene TSHZ1, was associated with both CRC and EC (OR = 1.26, P = 4.82 × 10−8), with the alleles showing opposite effects on the risks of the two cancers
PHIP - a novel candidate breast cancer susceptibility locus on 6q14.1
Most non-BRCA1/2 breast cancer families have no identified genetic cause. We used linkage and haplotype analyses in familial and sporadic breast cancer cases to identify a susceptibility locus on chromosome 6q. Two independent genome-wide linkage analysis studies suggested a 3 Mb locus on chromosome 6q and two unrelated Swedish families with a LOD > 2 together seemed to share a haplotype in 6q14.1. We hypothesized that this region harbored a rare high-risk founder allele contributing to breast cancer in these two families. Sequencing of DNA and RNA from the two families did not detect any pathogenic mutations. Finally, 29 SNPs in the region were analyzed in 44,214 cases and 43,532 controls from BCAC, and the original haplotypes in the two families were suggested as low-risk alleles for European and Swedish women specifically. There was also some support for one additional independent moderate-risk allele in Swedish familial samples. The results were consistent with our previous findings in familial breast cancer and supported a breast cancer susceptibility locus at 6q14.1 around the PHIP gene.Peer reviewe
Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry.
Purpose: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors.
Methods: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies.
Results: The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at p < 0.001), rs9939609 (FTO) (OR 0.94, 95 % CI = 0.92–0.95, p = 4.13E−13), rs7903146 (TCF7L2) (OR 1.04, 95 % CI = 1.02–1.06, p = 1.26E−05), and rs8042680 (PRC1) (OR 0.97, 95 % CI = 0.95–0.99, p = 8.05E−04).
Conclusions: We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk
- …