16 research outputs found

    Social tipping points in animal societies

    Get PDF
    Animal social groups are complex systems that are likely to exhibit tipping points—which are defined as drastic shifts in the dynamics of systems that arise from small changes in environmental conditions—yet this concept has not been carefully applied to these systems. Here we summarize the concepts behind tipping points and describe instances in which they are likely to occur in animal societies. We also offer ways in which the study of social tipping points can open up new lines of inquiry in behavioral ecology and generate novel questions, methods, and approaches in animal behavior and other fields, including community and ecosystem ecology. While some behaviors of living systems are hard to predict, we argue that probing tipping points across animal societies and across tiers of biological organization—populations, communities, ecosystems—may help to reveal principles that transcend traditional disciplinary boundaries

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Point-of-care testing in paediatric settings in the UK and Ireland: A cross-sectional study

    Get PDF
    Background: Point-of-care testing (POCT) is diagnostic testing performed at or near to the site of the patient. Understanding the current capacity, and scope, of POCT in this setting is essential in order to respond to new research evidence which may lead to wide implementation. Methods: A cross-sectional online survey study of POCT use was conducted between 6th January and 2nd February 2020 on behalf of two United Kingdom (UK) and Ireland-based paediatric research networks (Paediatric Emergency Research UK and Ireland, and General and Adolescent Paediatric Research UK and Ireland). Results: In total 91/109 (83.5%) sites responded, with some respondents providing details for multiple units on their site based on network membership (139 units in total). The most commonly performed POCT were blood sugar (137/139; 98.6%), urinalysis (134/139; 96.4%) and blood gas analysis (132/139; 95%). The use of POCT for Influenza/Respiratory Syncytial Virus (RSV) (45/139; 32.4%, 41/139; 29.5%), C-Reactive Protein (CRP) (13/139; 9.4%), Procalcitonin (PCT) (2/139; 1.4%) and Group A Streptococcus (5/139; 3.6%) and was relatively low. Obstacles to the introduction of new POCT included resources and infrastructure to support test performance and quality assurance. Conclusion: This survey demonstrates significant consensus in POCT practice in the UK and Ireland but highlights specific inequity in newer biomarkers, some which do not have support from national guidance. A clear strategy to overcome the key obstacles of funding, evidence base, and standardising variation will be essential if there is a drive toward increasing implementation of POCT

    Data, Model Documentation, and Output Supporting "Optimizing syndromic health surveillance in free ranging great apes: the case of Gombe National Park"

    No full text
    Data files include documentation of a disease simulation model, simulation data produced from the model, as well as input data used to parameterize the model.Syndromic surveillance is an incipient approach to early wildlife disease detection. Consequently, systematic assessments are needed for methodology validation in wildlife populations. We evaluated the sensitivity of a syndromic surveillance protocol for respiratory disease detection among chimpanzees in Gombe National Park, Tanzania. Empirical health, behavioral and demographic data were integrated with an agent-based, network model to simulate disease transmission and surveillance. Surveillance sensitivity was estimated as 66% (95% Confidence Interval: 63.1, 68.8%) and 59.5% (95% Confidence Interval: 56.5%, 62.4%) for two monitoring methods (weekly count and prevalence thresholds, respectively), but differences among calendar quarters in outbreak size and surveillance sensitivity suggest seasonal effects. We determined that a threshold weekly detection of ≥2 chimpanzees with clinical respiratory disease leading to outbreak response protocols (enhanced observation and biological sampling) is an optimal algorithm for outbreak detection in this population. Synthesis and applications: This is the first quantitative assessment of syndromic surveillance in wildlife, providing a model approach addressing disease emergence. Coupling syndromic surveillance with targeted diagnostic sampling in the midst of suspected outbreaks will provide a powerful system for detecting disease transmission and understanding population impacts.Funding support for collection and analysis of syndromic surveillance data comes from the National Institute of Health (R01 AI058715, R01 AI120810 and R00 HD057992), National Science Foundation (LTREB-1052693), Arcus Foundation, USFWS Great Ape Conservation Fund, Morris Animal Foundation (D10ZO-902), University of Minnesota Consortium on Law and Values in Health, Environment, and the Life Sciences, University of Minnesota Doctoral Dissertation Fellowship and Lincoln Park Zoo

    Estimates of paleo-crustal thickness at Cerro Aconcagua (Southern Central Andes) from detrital proxy-records: Implications for models of continental arc evolution

    No full text
    The Central Andes represent the archetypical Cordilleran orogenic system, with a well-developed continental volcanic arc and some of the thickest crust on Earth. Yet the relative contributions of shortening and magmatic additions to crustal thickening remain difficult to quantify, which hinders understanding processes of crustal evolution in continental arcs. Cerro Aconcagua, the highest mountain in the Americas and a relict Miocene stratovolcano resting on 55 km-thick crust, is the ideal natural laboratory to address this issue in subduction-related magmatic arcs because it preserves a multi-million year record of magmatism and deformation within the Aconcagua fold-thrust belt. Estimates of paleo-crustal thickness in the Andes can be made using the geochemistry of subduction-related magmatic rocks, or minerals crystallized within them. This study applies a geochemical proxy approach for crustal thickness estimates to detrital syntectonic deposits of the Santa Maria Conglomerate derived from the Aconcagua stratovolcano to reconstruct paleo-crustal thickness of the Andes at this latitude. Detrital zircon trace-element data from ashes intercalated in the conglomerate, combined with previously published paleo-crustal thickness data, indicate crustal thicknesses of ∼35 km ca. 38 Ma and ∼44 km ca. 12 Ma, requiring ∼11 km of crustal thickening after ca. 12 Ma to achieve present-day crustal thickness of ∼55 km. In the absence of significant magmatism since ca. 10 Ma at this location, we show that more than half of the crustal thickening after 12 Ma, corresponding to 2 km of uplift, was achieved by Miocene shortening. Our study also reveals significant differences in crustal thicknesses between the Central Andes and the southern Central Andes which we speculate may be due to southward crustal flow during the last ∼20 My.Fil: Carrapa, Barbara. University of Arizona; Estados UnidosFil: DeCelles, Peter G.. University of Arizona; Estados UnidosFil: Ducea, Mihai N.. Universitatea Din Bucuresti; Rumania. University of Arizona; Estados UnidosFil: Jepson, Gilby. University of Arizona; Estados UnidosFil: Osakwe, Arthur. University of Arizona; Estados UnidosFil: Balgord, Elizabeth. Weber State University; Estados UnidosFil: Stevens Goddard, Andrea L.. Indiana University; Estados UnidosFil: Giambiagi, Laura Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentin

    Reproductive state and rank influence patterns of meat consumption in wild female chimpanzees (Pan troglodytes schweinfurthii)

    No full text

    CONCEPTT : Continuous Glucose Monitoring in Women with Type 1 Diabetes in Pregnancy Trial: A multi-center, multi-national, randomized controlled trial - Study protocol

    Get PDF
    Women with type 1 diabetes strive for optimal glycemic control before and during pregnancy to avoid adverse obstetric and perinatal outcomes. For most women, optimal glycemic control is challenging to achieve and maintain. The aim of this study is to determine whether the use of real-time continuous glucose monitoring (RT-CGM) will improve glycemic control in women with type 1 diabetes who are pregnant or planning pregnancy. A multi-center, open label, randomized, controlled trial of women with type 1 diabetes who are either planning pregnancy with an HbA1c of 7.0 % to ≤10.0 % (53 to ≤ 86 mmol/mol) or are in early pregnancy (<13 weeks 6 days) with an HbA1c of 6.5 % to ≤10.0 % (48 to ≤ 86 mmol/mol). Participants will be randomized to either RT-CGM alongside conventional intermittent home glucose monitoring (HGM), or HGM alone. Eligible women will wear a CGM which does not display the glucose result for 6 days during the run-in phase. To be eligible for randomization, a minimum of 4 HGM measurements per day and a minimum of 96 hours total with 24 hours overnight (11 pm-7 am) of CGM glucose values are required. Those meeting these criteria are randomized to RT- CGM or HGM. A total of 324 women will be recruited (110 planning pregnancy, 214 pregnant). This takes into account 15 and 20 % attrition rates for the planning pregnancy and pregnant cohorts and will detect a clinically relevant 0.5 % difference between groups at 90 % power with 5 % significance. Randomization will stratify for type of insulin treatment (pump or multiple daily injections) and baseline HbA1c. Analyses will be performed according to intention to treat. The primary outcome is the change in glycemic control as measured by HbA1c from baseline to 24 weeks or conception in women planning pregnancy, and from baseline to 34 weeks gestation during pregnancy. Secondary outcomes include maternal hypoglycemia, CGM time in, above and below target (3.5-7.8 mmol/l), glucose variability measures, maternal and neonatal outcomes. This will be the first international multicenter randomized controlled trial to evaluate the impact of RT- CGM before and during pregnancy in women with type 1 diabetes. NCT01788527 December 19, 2012
    corecore