137 research outputs found

    El futuro de los hipermercados en España: ¿qué se puede aprender de la experiencia francesa?

    Get PDF
    La historia del hipermercado empezó hace más de 40 años y se ha convertido en este tiempo en uno de los grandes protagonistas de la distribución comercial moderna. El objetivo de este trabajo es explicar su desarrollo, con el fin de predecir futuras implantaciones en Francia, su lugar de origen, y de forma comparada en España, en donde el formato inició su actividad diez años después. Los resultados obtenidos establecen la validez del concepto «ciclo de vida» para explicar la evolución del hipermercado en ambos contextos geográficos, predicen un futuro incierto en Francia, y apuntan dificultades probables, a las que el formato tendrá que hacer frente, en el contexto españ[email protected]

    Microscopic nanomechanical dissipation in gallium arsenide resonators

    Full text link
    We report on a systematic study of nanomechanical dissipation in high-frequency (approximatively 300 MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300K

    Photoassisted tunneling from free-standing GaAs thin films into metallic surfaces

    Full text link
    The tunnel photocurrent between a gold surface and a free-standing semiconducting thin film excited from the rear by above bandgap light has been measured as a function of applied bias, tunnel distance and excitation light power. The results are compared with the predictions of a model which includes the bias dependence of the tunnel barrier height and the bias-induced decrease of surface recombination velocity. It is found that i) the tunnel photocurrent from the conduction band dominates that from surface states. ii) At large tunnel distance the exponential bias dependence of the current is explained by that of the tunnel barrier height, while at small distance the change of surface recombination velocity is dominant

    OH and RO 2 radicals at Dome C (East Antarctica): first observations and assessment of photochemical budget

    Get PDF
    International audienceMeasurements of OH and total peroxy RO 2 (HO 2 + organic peroxy) radicals were performed in December 2011/January 2012 at the Dome C Concordia station (East Antarctica, 75.1˚S / 123.3˚E) in the frame of the Oxi-dant Production over Antarctic Land and its Export (OPALE) project. The goal of these first on the East Antarctica plateau radical measurements was to estimate the oxidative capacity and assess the role of snow emissions on the radical budget in this part of Antarctica. The OH concentration levels were found to be in general similar to those observed at South Pole. However, based on the analysis of the OH sources and sinks derived from the available measurements of NO x , HONO, HCHO, H 2 O 2 and others, it has been concluded that, in contrast to South Pole, the photolysis of HONO is the major OH source at Dome C site. The role of HONO as the major source of OH is also supported by an excellent correlation of OH with the production rate of OH from the HONO photolysis. The observed diurnal profiles of OH and RO 2 are discussed in relation with boundary dynamics and the variability of photolysis and snow emissions rates

    Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak Memory

    Get PDF
    We propose an axiomatic generic framework for modelling weak memory. We show how to instantiate this framework for SC, TSO, C++ restricted to release-acquire atomics, and Power. For Power, we compare our model to a preceding operational model in which we found a flaw. To do so, we define an operational model that we show equivalent to our axiomatic model. We also propose a model for ARM. Our testing on this architecture revealed a behaviour later acknowl-edged as a bug by ARM, and more recently 31 additional anomalies. We offer a new simulation tool, called herd, which allows the user to specify the model of his choice in a concise way. Given a specification of a model, the tool becomes a simulator for that model. The tool relies on an axiomatic description; this choice allows us to outperform all previous simulation tools. Additionally, we confirm that verification time is vastly improved, in the case of bounded model checking. Finally, we put our models in perspective, in the light of empirical data obtained by analysing the C and C++ code of a Debian Linux distribution. We present our new analysis tool, called mole, which explores a piece of code to find the weak memory idioms that it uses

    Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia

    Get PDF
    Dopa-responsive dystonia is a childhood-onset dystonic disorder, characterized by a dramatic response to low dose of l-Dopa. Dopa-responsive dystonia is mostly caused by autosomal dominant mutations in the GCH1 gene (GTP cyclohydrolase1) and more rarely by autosomal recessive mutations in the TH (tyrosine hydroxylase) or SPR (sepiapterin reductase) genes. In addition, mutations in the PARK2 gene (parkin) which causes autosomal recessive juvenile parkinsonism may present as Dopa-responsive dystonia. In order to evaluate the relative frequency of the mutations in these genes, but also in the genes involved in the biosynthesis and recycling of BH4, and to evaluate the associated clinical spectrum, we have studied a large series of index patients (n = 64) with Dopa-responsive dystonia, in whom dystonia improved by at least 50% after l-Dopa treatment. Fifty seven of these patients were classified as pure Dopa-responsive dystonia and seven as Dopa-responsive dystonia-plus syndromes. All patients were screened for point mutations and large rearrangements in the GCH1 gene, followed by sequencing of the TH and SPR genes, then PTS (pyruvoyl tetrahydropterin synthase), PCBD (pterin-4a-carbinolamine dehydratase), QDPR (dihydropteridin reductase) and PARK2 (parkin) genes. We identified 34 different heterozygous point mutations in 40 patients, and six different large deletions in seven patients in the GCH1 gene. Except for one patient with mental retardation and a large deletion of 2.3 Mb encompassing 10 genes, all patients had stereotyped clinical features, characterized by pure Dopa-responsive dystonia with onset in the lower limbs and an excellent response to low doses of l-Dopa. Dystonia started in the first decade of life in 40 patients (85%) and before the age of 1 year in one patient (2.2%). Three of the 17 negative GCH1 patients had mutations in the TH gene, two in the SPR gene and one in the PARK2 gene. No mutations in the three genes involved in the biosynthesis and recycling of BH4 were identified. The clinical presentations of patients with mutations in TH and SPR genes were strikingly more complex, characterized by mental retardation, oculogyric crises and parkinsonism and they were all classified as Dopa-responsive dystonia-plus syndromes. Patient with mutation in the PARK2 gene had Dopa-responsive dystonia with a good improvement with l-Dopa, similar to Dopa-responsive dystonia secondary to GCH1 mutations. Although the yield of mutations exceeds 80% in pure Dopa-responsive dystonia and Dopa-responsive dystonia-plus syndromes groups, the genes involved are clearly different: GCH1 in the former and TH and SPR in the late

    Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions

    Get PDF
    International audienceAgricultural landscape homogenization has detrimental effects on biodiversity and key ecosystem services. Increasing agricultural landscape heterogeneity by increasing seminatural cover can help to mitigate biodiversity loss. However, the amount of seminatural cover is generally low and difficult to increase in many intensively managed agricultural landscapes. We hypothesized that increasing the heterogeneity of the crop mosaic itself (hereafter “crop heterogeneity”) can also have positive effects on biodiversity. In 8 contrasting regions of Europe and North America, we selected 435 landscapes along independent gradients of crop diversity and mean field size. Within each landscape, we selected 3 sampling sites in 1, 2, or 3 crop types. We sampled 7 taxa (plants, bees, butterflies, hoverflies, carabids, spiders, and birds) and calculated a synthetic index of multitrophic diversity at the landscape level. Increasing crop heterogeneity was more beneficial for multitrophic diversity than increasing seminatural cover. For instance, the effect of decreasing mean field size from 5 to 2.8 ha was as strong as the effect of increasing seminatural cover from 0.5 to 11%. Decreasing mean field size benefited multitrophic diversity even in the absence of seminatural vegetation between fields. Increasing the number of crop types sampled had a positive effect on landscape-level multitrophic diversity. However, the effect of increasing crop diversity in the landscape surrounding fields sampled depended on the amount of seminatural cover. Our study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production

    Single artificial atoms in silicon emitting at telecom wavelengths

    Full text link
    Given its unrivaled potential of integration and scalability, silicon is likely to become a key platform for large-scale quantum technologies. Individual electron-encoded artificial atoms either formed by impurities or quantum dots have emerged as a promising solution for silicon-based integrated quantum circuits. However, single qubits featuring an optical interface needed for large-distance exchange of information have not yet been isolated in such a prevailing semiconductor. Here we show the isolation of single optically-active point defects in a commercial silicon-on-insulator wafer implanted with carbon atoms. These artificial atoms exhibit a bright, linearly polarized single-photon emission at telecom wavelengths suitable for long-distance propagation in optical fibers. Our results demonstrate that despite its small bandgap (~ 1.1 eV) a priori unfavorable towards such observation, silicon can accommodate point defects optically isolable at single scale, like in wide-bandgap semiconductors. This work opens numerous perspectives for silicon-based quantum technologies, from integrated quantum photonics to quantum communications and metrology
    corecore