19 research outputs found

    Loss of secreted gelsolin enhances response to anticancer therapies

    Get PDF
    Type 1 conventional dendritic cells (cDC1) play a critical role in priming anticancer cytotoxic CD8+ T cells. DNGR-1 (a.k.a. CLEC9A) is a cDC1 receptor that binds to F-actin exposed on necrotic cancer and normal cells. DNGR-1 signaling enhances cross-presentation of dead-cell associated antigens, including tumor antigens. We have recently shown that secreted gelsolin (sGSN), a plasma protein, competes with DNGR-1 for binding to dead cell-exposed F-actin and dampens anticancer immunity. Here, we investigated the effects of loss of sGSN on various anticancer therapies that are thought to induce cell death and provoke an immune response to cancer. We compared WT (wildtype) with Rag1-/- , Batf3-/- , Clec9agfp/gfp , sGsn-/- or sGsn-/- Clec9agfp/gfp mice implanted with transplantable tumor cell lines, including MCA-205 fibrosarcoma, 5555 BrafV600E melanoma and B16-F10 LifeAct (LA)-ovalbumin (OVA)-mCherry melanoma. Tumor-bearing mice were treated with (1) doxorubicin (intratumoral) chemotherapy for MCA-205, (2) BRAF-inhibitor PLX4720 (oral gavage) targeted therapy for 5555 BrafV600E, and (3) X-ray radiotherapy for B16 LA-OVA-mCherry. We confirmed that efficient tumor control following each therapy requires an immunocompetent host as efficacy was markedly reduced in Rag1-/- compared with WT mice. Notably, across all the therapeutic modalities, loss of sGSN significantly enhanced tumor control compared with treated WT controls. This was an on-target effect as mice deficient in both sGSN and DNGR-1 behaved no differently from WT mice following therapy. In sum, we find that mice deficient in sGsn display enhanced DNGR-1-dependent responsiveness to chemotherapy, targeted therapy and radiotherapy. Our findings are consistent with the notion some cancer therapies induce immunogenic cell death (ICD), which mobilizes anticancer T cells. Our results point to cDC1 and DNGR-1 as decoders of ICD and to sGSN as a negative regulator of such decoding, highlighting sGSN as a possible target in cancer treatment. Further prospective studies are warranted to identify patients who may benefit most from inhibition of sGSN function

    The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s

    Get PDF
    The Human Silencing Hub (HUSH) complex is necessary for epigenetic repression of LINE-1 elements. We show that HUSH-depletion in human cell lines and primary fibroblasts leads to induction of interferon-stimulated genes (ISGs) through JAK/STAT signaling. This effect is mainly attributed to MDA5 and RIG-I sensing of double-stranded RNAs (dsRNAs). This coincides with upregulation of primate-conserved LINE-1s, as well as increased expression of full-length hominid-specific LINE-1s that produce bidirectional RNAs, which may form dsRNA. Notably, LTRs nearby ISGs are derepressed likely rendering these genes more responsive to interferon. LINE-1 shRNAs can abrogate the HUSH-dependent response, while overexpression of an engineered LINE-1 construct activates interferon signaling. Finally, we show that the HUSH component, MPP8 is frequently downregulated in diverse cancers and that its depletion leads to DNA damage. These results suggest that LINE-1s may drive physiological or autoinflammatory responses through dsRNA sensing and gene-regulatory roles and are controlled by the HUSH complex

    Limited mitochondrial permeabilisation causes DNA-damage and genomic instability in the absence of cell death

    Get PDF
    During apoptosis, the mitochondrial outer membrane is permeabilized, leading to the release of cytochrome c that activates downstream caspases. Mitochondrial outer membrane permeabilization (MOMP) has historically been thought to occur synchronously and completely throughout a cell, leading to rapid caspase activation and apoptosis. Using a new imaging approach, we demonstrate that MOMP is not an all-or-nothing event. Rather, we find that a minority of mitochondria can undergo MOMP in a stress-regulated manner, a phenomenon we term "minority MOMP." Crucially, minority MOMP leads to limited caspase activation, which is insufficient to trigger cell death. Instead, this caspase activity leads to DNA damage that, in turn, promotes genomic instability, cellular transformation, and tumorigenesis. Our data demonstrate that, in contrast to its well-established tumor suppressor function, apoptosis also has oncogenic potential that is regulated by the extent of MOMP. These findings have important implications for oncogenesis following either physiological or therapeutic engagement of apoptosis

    Mitochondrial permeabilization engages NF-kappa B-dependent anti-tumour activity under caspase deficiency

    Get PDF
    Apoptosis represents a key anti-cancer therapeutic effector mechanism. During apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically kills cells even in the absence of caspase activity. Caspase activity can also have a variety of unwanted consequences that include DNA damage. We therefore investigated whether MOMP-induced caspase-independent cell death (CICD) might be a better way to kill cancer cells. We find that cells undergoing CICD display potent pro-inflammatory effects relative to apoptosis. Underlying this, MOMP was found to stimulate NF-κB activity through the downregulation of inhibitor of apoptosis proteins. Strikingly, engagement of CICD displays potent anti-tumorigenic effects, often promoting complete tumour regression in a manner dependent on intact immunity. Our data demonstrate that by activating NF-κB, MOMP can exert additional signalling functions besides triggering cell death. Moreover, they support a rationale for engaging caspase-independent cell death in cell-killing anti-cancer therapies

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Application of mito-priming to generate BCL-2 addicted cells

    No full text
    The majority of apoptotic stimuli trigger cell death through the mitochondrial pathway of apoptosis. Invariably, mitochondrial apoptosis requires engagement of mitochondrial outer membrane permeabilization or MOMP to initiate cell death. We have developed a new method, called mito-priming, that allows for rapid and synchronous induction of mitochondrial apoptosis in an on-target manner. Mito-priming uses coexpression of pro- and antiapoptotic Bcl-2 proteins to render cells sensitive to the addition of Bcl-2 targeting BH3-mimetic drugs. This chapter describes how to design mito-priming constructs and apply them to generate mito-primed lines. Second, we describe how to validate cell death sensitivity of mito-primed lines using different methods. Finally, we describe how to generate MOMP-resistant cell lines, using CRISPR-Cas9 mediated deletion of BAX and BAK. Facilitating the investigation of mitochondrial apoptosis, mito-priming provides a clean, robust way to induce mitochondrial apoptosis both in vitro and in vivo

    SYK ubiquitination by CBL E3 ligases restrains cross-presentation of dead cell-associated antigens by type 1 dendritic cells

    No full text
    Summary: Cross-presentation of dead cell-associated antigens by conventional dendritic cells type 1 (cDC1s) is critical for CD8+ T cells response against many tumors and viral infections. It is facilitated by DNGR-1 (CLEC9A), an SYK-coupled cDC1 receptor that detects dead cell debris. Here, we report that DNGR-1 engagement leads to rapid activation of CBL and CBL-B E3 ligases to cause K63-linked ubiquitination of SYK and terminate signaling. Genetic deletion of CBL E3 ligases or charge-conserved mutation of target lysines within SYK abolishes SYK ubiquitination and results in enhanced DNGR-1-dependent antigen cross-presentation. We also find that cDC1 deficient in CBL E3 ligases are more efficient at cross-priming CD8+ T cells to dead cell-associated antigens and promoting host resistance to tumors. Our findings reveal a role for CBL-dependent ubiquitination in limiting cross-presentation of dead cell-associated antigens and highlight an axis of negative regulation of cDC1 activity that could be exploited to increase anti-tumor immunity
    corecore