13 research outputs found

    Diagnosing Emerging Fungal Threats: A One Health Perspective

    Get PDF
    Emerging fungal pathogens are a growing threat to global health, ecosystems, food security, and the world economy. Over the last century, environmental change and globalized transport, twinned with the increasing application of antifungal chemical drugs have led to increases in outbreaks of fungal diseases with sometimes catastrophic effects. In order to tackle contemporary epidemics and predemic threats, there is a pressing need for a unified approach in identification and monitoring of fungal pathogens. In this paper, we discuss current high throughput technologies, as well as new platforms capable of combining diverse data types to inform practical epidemiological strategies with a focus on emerging fungal pathogens of wildlife

    Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi

    Get PDF
    T.W.J.G., M.C.F., D.S.S., A.L., E.C., F.C.C., J.B., A.A.C., C.M., F.S., B.R.S., S.O., were supported through the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (NERC standard grant NE/K014455/1 and NE/E006701/1; ANR-08-BDVA-002-03). M.C.F., J.S., C.W., P.G. were supported by the Leverhulme Trust (RPG-2014-273), M.C.F., A.C., C.W. were supported by the Morris Animal Foundation. J.V. was supported by the Bolyai JĂĄnos Research Grant of the Hunagrian Academy of Sciences (BO/00597/14). F.G. and D.G. were supported by the Conservation Leadership Programme Future Conservationist Award. C.S.A. was supported by Fondecyt (No. 1181758). M.C.F. and A.C. were supported by. Mohamed bin Zayed Species Conservation Fund Project (152510704). GMR held a doctoral scholarship (SFRH/BD/69194/2010) from Fundação para a CiĂȘncia e a Tecnologia. L.F.T., C.L., L.P.R. K.R.Z., T.Y.J., T.S.J. were supported by SĂŁo Paulo Research Foundation (FAPESP #2016/25358-3), the National Counsel of Technological and Scientific Development (CNPq #300896/2016–6) and a Catalyzing New International Collaborations grant from the United States NSF (OISE-1159513). C.S.A. was supported by Fondecyt (No. 1181758). T.M.D. was supported by the Royal Geographical Society and the Royal Zoological Society of Scotland. B.W. was supported by the National Research Foundation of Korea (2015R1D1A1A01057282).Peer reviewedPublisher PD

    Recent Asian origin of chytrid fungi causing global amphibian declines

    Get PDF
    Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide

    Development and worldwide use of non-lethal, and minimal population-level impact, protocols for the isolation of amphibian chytrid fungi

    Get PDF
    © The Author(s) 2018.Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.T.W.J.G., M.C.F., D.S.S., A.L., E.C., F.C.C., J.B., A.A.C., C.M., F.S., B.R.S., S.O., were supported through the Biodiversa project RACE: Risk Assessment of Chytridiomycosis to European Amphibian Biodiversity (NERC standard grant NE/K014455/1 and NE/E006701/1; ANR-08-BDVA-002-03). M.C.F., J.S., C.W., P.G. were supported by the Leverhulme Trust (RPG-2014-273), M.C.F., A.C., C.W. were supported by the Morris Animal Foundation. J.V. was supported by the Bolyai JĂĄnos Research Grant of the Hunagrian Academy of Sciences (BO/00597/14). F.G. and D.G. were supported by the Conservation Leadership Programme Future Conservationist Award. C.S.A. was supported by Fondecyt (No. 1181758). M.C.F. and A.C. were supported by. Mohamed bin Zayed Species Conservation Fund Project (152510704). GMR held a doctoral scholarship (SFRH/ BD/69194/2010) from Fundação para a CiĂȘncia e a Tecnologia. L.F.T., C.L., L.P.R. K.R.Z., T.Y.J., T.S.J. were supported by SĂŁo Paulo Research Foundation (FAPESP #2016/25358-3), the National Counsel of Technological and Scientifc Development (CNPq #300896/2016–6) and a Catalyzing New International Collaborations grant from the United States NSF (OISE-1159513). C.S.A. was supported by Fondecyt (No. 1181758). T.M.D. was supported by the Royal Geographical Society and the Royal Zoological Society of Scotland. B.W. was supported by the National Research Foundation of Korea (2015R1D1A1A01057282).Peer Reviewe

    The ecology of chytrid lineages in Southern Africa

    No full text
    The inter- and intraspecific diversity of microbial communities is known to be an important, but difficult to disentangle, factor in pathogen ecology. Conspecific or interspecific microbial interactions may result in competitive suppression, the evolution of pathogens to greater levels of virulence, environmental niche separation and coexistence or even result in the generation of novel recombinant pathogen genotypes. Batrachochytrium dendrobatidis (Bd), the causative agent of chytridiomycosis, is a uniquely destructive pathogen – it is the proximate driver behind the population declines of an unprecedented number of amphibian species and has undergone a global dispersal. It has also become clear that within Bd are multiple phylogenetically deeply diverged lineages. There is evidence that these lineages vary in ecology and virulence, but diagnostic limitations have hampered research assessing the importance of lineage and lineage interactions on Bd epidemiology. I have developed a novel qPCR-based diagnostic to type the Bd lineage present in amphibian skin swabs, museum specimens and experimental animals quickly and economically, to facilitate the collection of baseline data on chytrid lineage distributions globally and to enable experimental work on lineage interactions and ecology. Using this novel diagnostic assay I have delineated Bd lineage distributions over one of the widest areas to date in South Africa and the Lesotho highlands, where both BdGPL and BdCAPE are shown to coexist, but are associated with different environmental conditions and exhibit distinctly different population structures. The data collected from this fieldwork were used to inform experimental work investigating whether the distributions observed in reality may be due to the lineages exhibiting divergent thermal optima. Finally, I considered the role that the wider fungal community may play in modulating pathogen dynamics by investigating whether a novel Malagasy chytrid may be preventing Bd from establishing on Madagascar, a biodiversity hotspot with a diverse endemic amphibian community.Open Acces

    Environment predicts Batrachochytrium dendrobatidis lineage distribution and zones of recombination in South Africa

    No full text
    Abstract The amphibian‐infecting chytrid fungus, Batrachochytrium dendrobatidis (Bd), is widespread throughout Africa and is linked to declines of populations and species across the continent. While it is well established that the lineage of Bd encodes traits which determine disease severity, knowledge around how lineages are distributed according to environmental envelope is unclear. We here studied the distribution of Bd in South Africa based on the two lineages found, BdGPL and BdCAPE, in terms of their genome and environmental envelope statistically associated with their distribution. We used Bd surveillance data from published studies, as well as data collected during fieldwork from across South Africa, Lesotho, and eSwatini with samples collected along a transect spanning most of South Africa from Lesotho to the west coast. We utilized lineage‐typing qPCR to resolve the spatial distribution of BdGPL and BdCAPE across South Africa and used the resulting surveillance data to create a predictive ecological niche model for Bd lineages in South Africa. Phylogenomic analyses were performed on isolates sourced from across the transect. We show that BdGPL demonstrates a strong isolation by distance suggestive of stepping‐stone dispersal, while BdCAPE showed two distinct clusters within their genomic structure that appear geographically and temporally clustered, indicating two separate invasions. Our predictive niche model revealed that the two lineages tended to occur in different ecotypes; BdGPL was associated with lower altitude, arid regions while BdCAPE occurred across cooler, higher altitude environs. Niche predictions identified a zone of lineage contact, where genomics identified inter‐lineage recombinants. We argue that this zone of recombination should be prioritized for disease surveillance as it is a potential hotspot for the evolution of variants of amphibian chytrid with novel traits that may be epidemiologically relevant

    Cross-disciplinary genomics approaches to studying emerging fungal infections

    Get PDF
    Emerging fungal pathogens pose a serious, global and growing threat to food supply systems, wild ecosystems, and human health. However, historic chronic underinvestment in their research has resulted in a limited understanding of their epidemiology relative to bacterial and viral pathogens. Therefore, the untargeted nature of genomics and, more widely, -omics approaches is particularly attractive in addressing the threats posed by and illuminating the biology of these pathogens. Typically, research into plant, human and wildlife mycoses have been largely separated, with limited dialogue between disciplines. However, many serious mycoses facing the world today have common traits irrespective of host species, such as plastic genomes; wide host ranges; large population sizes and an ability to persist outside the host. These commonalities mean that -omics approaches that have been productively applied in one sphere and may also provide important insights in others, where these approaches may have historically been underutilised. In this review, we consider the advances made with genomics approaches in the fields of plant pathology, human medicine and wildlife health and the progress made in linking genomes to other -omics datatypes and sets; we identify the current barriers to linking -omics approaches and how these are being underutilised in each field; and we consider how and which -omics methodologies it is most crucial to build capacity for in the near future

    Prevalence of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in thre Hoang Lien Range, northwest Vietnam

    No full text
    This study aims to investigate the presence of the amphibian chytrid fungi Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) in the Hoang Lien Range, northwest Vietnam as well as any patterns in Bd infection in space, time and host species over a five-year sampling period. This study also aims to investigate the presence of Bsal in the Hoang Lien Range
    corecore