61 research outputs found

    The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    Get PDF
    We describe the design and data sample from the DEEP2 Galaxy Redshift Survey, the densest and largest precision-redshift survey of galaxies at z ~ 1 completed to date. The survey has conducted a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M_B = -20 at z ~ 1 via ~90 nights of observation on the DEIMOS spectrograph at Keck Observatory. DEEP2 covers an area of 2.8 deg^2 divided into four separate fields, observed to a limiting apparent magnitude of R_AB=24.1. Objects with z < 0.7 are rejected based on BRI photometry in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately sixty percent of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets which fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45. The DEIMOS 1200-line/mm grating used for the survey delivers high spectral resolution (R~6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. DEEP2 surpasses other deep precision-redshift surveys at z ~ 1 in terms of galaxy numbers, redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the publicly-available DEEP2 DEIMOS data reduction pipelines. [Abridged]Comment: submitted to ApJS; data products available for download at http://deep.berkeley.edu/DR4

    Neuropeptidomic Components Generated by Proteomic Functions in Secretory Vesicles for Cell–Cell Communication

    Get PDF
    Diverse neuropeptides participate in cell–cell communication to coordinate neuronal and endocrine regulation of physiological processes in health and disease. Neuropeptides are short peptides ranging in length from ~3 to 40 amino acid residues that are involved in biological functions of pain, stress, obesity, hypertension, mental disorders, cancer, and numerous health conditions. The unique neuropeptide sequences define their specific biological actions. Significantly, this review article discusses how the neuropeptide field is at the crest of expanding knowledge gained from mass-spectrometry-based neuropeptidomic studies, combined with proteomic analyses for understanding the biosynthesis of neuropeptidomes. The ongoing expansion in neuropeptide diversity lies in the unbiased and global mass-spectrometry-based approaches for identification and quantitation of peptides. Current mass spectrometry technology allows definition of neuropeptide amino acid sequence structures, profiling of multiple neuropeptides in normal and disease conditions, and quantitative peptide measures in biomarker applications to monitor therapeutic drug efficacies. Complementary proteomic studies of neuropeptide secretory vesicles provide valuable insight into the protein processes utilized for neuropeptide production, storage, and secretion. Furthermore, ongoing research in developing new computational tools will facilitate advancements in mass-spectrometry-based identification of small peptides. Knowledge of the entire repertoire of neuropeptides that regulate physiological systems will provide novel insight into regulatory mechanisms in health, disease, and therapeutics

    Variations in Stress Sensitivity and Genomic Expression in Diverse S. cerevisiae Isolates

    Get PDF
    Interactions between an organism and its environment can significantly influence phenotypic evolution. A first step toward understanding this process is to characterize phenotypic diversity within and between populations. We explored the phenotypic variation in stress sensitivity and genomic expression in a large panel of Saccharomyces strains collected from diverse environments. We measured the sensitivity of 52 strains to 14 environmental conditions, compared genomic expression in 18 strains, and identified gene copy-number variations in six of these isolates. Our results demonstrate a large degree of phenotypic variation in stress sensitivity and gene expression. Analysis of these datasets reveals relationships between strains from similar niches, suggests common and unique features of yeast habitats, and implicates genes whose variable expression is linked to stress resistance. Using a simple metric to suggest cases of selection, we found that strains collected from oak exudates are phenotypically more similar than expected based on their genetic diversity, while sake and vineyard isolates display more diverse phenotypes than expected under a neutral model. We also show that the laboratory strain S288c is phenotypically distinct from all of the other strains studied here, in terms of stress sensitivity, gene expression, Ty copy number, mitochondrial content, and gene-dosage control. These results highlight the value of understanding the genetic basis of phenotypic variation and raise caution about using laboratory strains for comparative genomics

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Institutional Environments for Enabling Agricultural Technology Innovations: The Role of Land Rights in Ethiopia, Ghana, India and Bangladesh

    Full text link

    Social Safety Nets for Food and Nutritional Security in India

    Full text link
    This paper brings together existing literature on the Mahatma Gandhi National Rural Employment Guarantee Act (MGNRGEA) and the Public Distribution System (PDS) in India, offering a narrative review of the evidence on impacts on food security, health and nutrition of beneficiaries. Both programs operate on a large scale and have the capacity to impact the factors leading to undernutrition. It is evident that despite the deficiencies in implementation, both the MGNREGA and the PDS are inclusive and reach the poor and the marginalized who are likely to also experience greater undernutrition and poor health. Data challenges have however prevented researchers from conducting studies that assess the ultimate impact of these two large-scale programs on health and nutrition. The evidence that exists suggests largely positive impacts indicating a clear potential to make these programs more nutrition sensitive not just by incorporating elements that would explicitly address nutritional concerns but also by directing specific attention to innovations that strengthen critical complementarities and synergies that exist between the two programs

    Harvesting Solar Power in India

    Full text link

    Between Hope and Hype: Traditional Knowledge(s) Held by Marginal Communities

    Full text link
    corecore