51 research outputs found
Levitated optomechanics: A tutorial and perspective
Optomechanics, the study of the mechanical interaction of light with matter,
has proven to be a fruitful area of research that has yielded many notable
achievements, including the direct detection of gravitational waves in
kilometer-scale optical interferometers. Light has been used to cool and
demonstrate quantum control over the mechanical degrees of freedom of
individual ions and atoms, and more recently has facilitated the observation of
quantum ``mechanics'' in objects of larger mass, even at the kg-scale.
Levitated optomechanics, where an object can be suspended by radiation pressure
and largely decoupled from its environment, has recently established itself as
a rich field of study, with many notable results relevant for precision
measurement, quantum information science, and foundational tests of quantum
mechanics and fundamental physics. This article provides a survey of several
current activities in field along with a tutorial describing associated key
concepts and methods, both from an experimental and theoretical approach. It is
intended as a resource for junior researchers who are new to this growing field
as well as beginning graduate students. The tutorial is concluded with a
perspective on both promising emerging experimental platforms and anticipated
future theoretical developments.Comment: 50 pages, 19 figures, submitted to Advances in Optics and Photonic
Effect of Thromboprophylaxis on Clinical Outcomes After COVID-19 Hospitalization
BACKGROUND: Patients hospitalized with COVID-19 have an increased incidence of thromboembolism. The role of extended thromboprophylaxis after hospital discharge is unclear.
OBJECTIVE: To determine whether anticoagulation is superior to placebo in reducing death and thromboembolic complications among patients discharged after COVID-19 hospitalization.
DESIGN: Prospective, randomized, double-blind, placebo-controlled clinical trial. (ClinicalTrials.gov: NCT04650087).
SETTING: Done during 2021 to 2022 among 127 U.S. hospitals.
PARTICIPANTS: Adults aged 18 years or older hospitalized with COVID-19 for 48 hours or more and ready for discharge, excluding those with a requirement for, or contraindication to, anticoagulation.
INTERVENTION: 2.5 mg of apixaban versus placebo twice daily for 30 days.
MEASUREMENTS: The primary efficacy end point was a 30-day composite of death, arterial thromboembolism, and venous thromboembolism. The primary safety end points were 30-day major bleeding and clinically relevant nonmajor bleeding.
RESULTS: Enrollment was terminated early, after 1217 participants were randomly assigned, because of a lower than anticipated event rate and a declining rate of COVID-19 hospitalizations. Median age was 54 years, 50.4% were women, 26.5% were Black, and 16.7% were Hispanic; 30.7% had a World Health Organization severity score of 5 or greater, and 11.0% had an International Medical Prevention Registry on Venous Thromboembolism risk prediction score of greater than 4. Incidence of the primary end point was 2.13% (95% CI, 1.14 to 3.62) in the apixaban group and 2.31% (CI, 1.27 to 3.84) in the placebo group. Major bleeding occurred in 2 (0.4%) and 1 (0.2%) and clinically relevant nonmajor bleeding occurred in 3 (0.6%) and 6 (1.1%) apixaban-treated and placebo-treated participants, respectively. By day 30, thirty-six (3.0%) participants were lost to follow-up, and 8.5% of apixaban and 11.9% of placebo participants permanently discontinued the study drug treatment.
LIMITATIONS: The introduction of SARS-CoV-2 vaccines decreased the risk for hospitalization and death. Study enrollment spanned the peaks of the Delta and Omicron variants in the United States, which influenced illness severity.
CONCLUSION: The incidence of death or thromboembolism was low in this cohort of patients discharged after hospitalization with COVID-19. Because of early enrollment termination, the results were imprecise and the study was inconclusive.
PRIMARY FUNDING SOURCE: National Institutes of Health
US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report
This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in
Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference
Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: tolerance dose of small liver volumes
<p>Abstract</p> <p>Backround</p> <p>Hepatic radiation toxicity restricts irradiation of liver malignancies. Better knowledge of hepatic tolerance dose is favourable to gain higher safety and to optimize radiation regimes in radiotherapy of the liver. In this study we sought to determine the hepatic tolerance dose to small volume single fraction high dose rate irradiation.</p> <p>Materials and methods</p> <p>23 liver metastases were treated by CT-guided interstitial brachytherapy. MRI was performed 3 days, 6, 12 and 24 weeks after therapy. MR-sequences were conducted with T1-w GRE enhanced by hepatocyte-targeted Gd-EOB-DTPA. All MRI data sets were merged with 3D-dosimetry data. The reviewer indicated the border of hypointensity on T1-w images (loss of hepatocyte function) or hyperintensity on T2-w images (edema). Based on the volume data, a dose-volume-histogram was calculated. We estimated the threshold dose for edema or function loss as the D<sub>90</sub>, i.e. the dose achieved in at least 90% of the pseudolesion volume.</p> <p>Results</p> <p>At six weeks post brachytherapy, the hepatocyte function loss reached its maximum extending to the former 9.4Gy isosurface in median (i.e., ≥9.4Gy dose exposure led to hepatocyte dysfunction). After 12 and 24 weeks, the dysfunctional volume had decreased significantly to a median of 11.4Gy and 14Gy isosurface, respectively, as a result of repair mechanisms. Development of edema was maximal at six weeks post brachytherapy (9.2Gy isosurface in median), and regeneration led to a decrease of the isosurface to a median of 11.3Gy between 6 and 12 weeks. The dose exposure leading to hepatocyte dysfunction was not significantly different from the dose provoking edema.</p> <p>Conclusion</p> <p>Hepatic injury peaked 6 weeks after small volume irradiation. Ongoing repair was observed up to 6 months. Individual dose sensitivity may differ as demonstrated by a relatively high standard deviation of threshold values in our own as well as all other published data.</p
Recommended from our members
Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal rTMS in major depression
Background
Depression is a heterogeneous mental illness. Neurostimulation treatments, by targeting specific nodes within the brain’s emotion-regulation network, may be useful both as therapies and as probes for identifying clinically relevant depression subtypes.
Methods
Here, we applied 20 sessions of magnetic resonance imaging-guided repetitive transcranial magnetic stimulation (rTMS) to the dorsomedial prefrontal cortex in 47 unipolar or bipolar patients with a medication-resistant major depressive episode.
Results
Treatment response was strongly bimodal, with individual patients showing either minimal or marked improvement. Compared with responders, nonresponders showed markedly higher baseline anhedonia symptomatology (including pessimism, loss of pleasure, and loss of interest in previously enjoyed activities) on item-by-item examination of Beck Depression Inventory-II and Quick Inventory of Depressive Symptomatology ratings. Congruently, on baseline functional magnetic resonance imaging, nonresponders showed significantly lower connectivity through a classical reward pathway comprising ventral tegmental area, striatum, and a region in ventromedial prefrontal cortex. Responders and nonresponders also showed opposite patterns of hemispheric lateralization in the connectivity of dorsomedial and dorsolateral regions to this same ventromedial region.
Conclusions
The results suggest distinct depression subtypes, one with preserved hedonic function and responsive to dorsomedial rTMS and another with disrupted hedonic function, abnormally lateralized connectivity through ventromedial prefrontal cortex, and unresponsive to dorsomedial rTMS. Future research directly comparing the effects of rTMS at different targets, guided by neuroimaging and clinical presentation, may clarify whether hedonia/reward circuit integrity is a reliable marker for optimizing rTMS target selection
Recommended from our members
Resting state cortico-thalamic-striatal connectivity predicts pesponse to dorsomedial prefrontal rTMS in major depressive disorder
Despite its high toll on society, there has been little recent improvement in treatment efficacy for Major Depressive Disorder (MDD). The identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we investigate whether resting state functional connectivity predicted response to treatment with rapid transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty five individuals with treatment-refractory MDD underwent a 4-week course of dmPFC-rTMS. Before and after treatment, subjects received resting state functional MRI scans and assessments of depressive symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal and cortico-limbic connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-thalamic connectivity and decreased sgACC-caudate connectivity, Our findings provide insight into which individuals might respond to rTMS treatment and the mechanisms through which these treatments work
US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report
This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017
Electric dipole moments and the search for new physics
Static electric dipole moments of nondegenerate systems probe mass scales for
physics beyond the Standard Model well beyond those reached directly at high
energy colliders. Discrimination between different physics models, however,
requires complementary searches in atomic-molecular-and-optical, nuclear and
particle physics. In this report, we discuss the current status and prospects
in the near future for a compelling suite of such experiments, along with
developments needed in the encompassing theoretical framework.Comment: Contribution to Snowmass 2021; updated with community edits and
endorsement
Cold atoms in space: community workshop summary and proposed road-map
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
Recommended from our members
Cold atoms in space: community workshop summary and proposed road-map
We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies
- …