66 research outputs found

    Novel Respiratory Virus Infections in Children, Brazil

    Get PDF
    Recently discovered respiratory viruses were detected in 19 (9.2%) of 205 nasal swab specimens from children in Brazil with respiratory illnesses. Five each were positive for human metapneumovirus (HMPV) alone and human bocavirus (HBoV) alone, 3 for human coronaviruses (HCoV-HKU1 or -NL63) alone, and 6 for more than 1 recently discovered virus

    A Novel Role of Peripheral Corticotropin-Releasing Hormone (CRH) on Dermal Fibroblasts

    Get PDF
    Corticotropin-releasing hormone, or factor, (CRH or CRF) exerts important biological effects in multiple peripheral tissues via paracrine/autocrine actions. The aim of our study was to assess the effects of endogenous CRH in the biology of mouse and human skin fibroblasts, the primary cell type involved in wound healing. We show expression of CRH and its receptors in primary fibroblasts, and we demonstrate the functionality of fibroblast CRH receptors by induction of cAMP. Fibroblasts genetically deficient in Crh (Crh−/−) had higher proliferation and migration rates and compromised production of IL-6 and TGF-β1 compared to the wildtype (Crh+/+) cells. Human primary cultures of foreskin fibroblasts exposed to the CRF1 antagonist antalarmin recapitulated the findings in the Crh−/− cells, exhibiting altered proliferative and migratory behavior and suppressed production of IL-6. In conclusion, our findings show an important role of fibroblast-expressed CRH in the proliferation, migration, and cytokine production of these cells, processes associated with the skin response to injury. Our data suggest that the immunomodulatory effects of CRH may include an important, albeit not explored yet, role in epidermal tissue remodeling and regeneration and maintenance of tissue homeostasis

    In Situ-Targeting of Dendritic Cells with Donor-Derived Apoptotic Cells Restrains Indirect Allorecognition and Ameliorates Allograft Vasculopathy

    Get PDF
    Chronic allograft vasculopathy (CAV) is an atheromatous-like lesion that affects vessels of transplanted organs. It is a component of chronic rejection that conventional immuno-suppression fails to prevent, and is a major cause of graft loss. Indirect allo-recognition through T cells and allo-Abs are critical during CAV pathogenesis. We tested whether the indirect allo-response and its impact on CAV is down-regulated by in situ-delivery of donor Ags to recipient's dendritic cells (DCs) in lymphoid organs in a pro-tolerogenic fashion, through administration of donor splenocytes undergoing early apoptosis. Following systemic injection, donor apoptotic cells were internalized by splenic CD11chi CD8α+ and CD8− DCs, but not by CD11cint plasmacytoid DCs. Those DCs that phagocytosed apoptotic cells in vivo remained quiescent, resisted ex vivo-maturation, and presented allo-Ag for up to 3 days. Administration of donor apoptotic splenocytes, unlike cells alive, (i) promoted deletion, FoxP3 expression and IL-10 secretion, and decreased IFN-γ-release in indirect pathway CD4 T cells; and (ii) reduced cross-priming of anti-donor CD8 T cells in vivo. Targeting recipient's DCs with donor apoptotic cells reduced significantly CAV in a fully-mismatched aortic allograft model. The effect was donor specific, dependent on the physical characteristics of the apoptotic cells, and was associated to down-regulation of the indirect type-1 T cell allo-response and secretion of allo-Abs, when compared to recipients treated with donor cells alive or necrotic. Down-regulation of indirect allo-recognition through in situ-delivery of donor-Ag to recipient's quiescent DCs constitutes a promising strategy to prevent/ameliorate indirect allorecognition and CAV

    Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autoimmune diabetes (T1D) onset is preceded by a long inflammatory process directed against the insulin-secreting β cells of the pancreas. Deciphering the early autoimmune mechanisms represents a challenge due to the absence of clinical signs at early disease stages. The aim of this study was to identify genes implicated in the early steps of the autoimmune process, prior to inflammation, in T1D. We have previously established that insulin autoantibodies (E-IAA) predict early diabetes onset delineating an early phenotypic check point (window 1) in disease pathogenesis. We used this sub-phenotype and applied differential gene expression analysis in the pancreatic lymph nodes (PLN) of 5 weeks old Non Obese Diabetic (NOD) mice differing solely upon the presence or absence of E-IAA. Analysis of gene expression profiles has the potential to provide a global understanding of the disease and to generate novel hypothesis concerning the initiation of the autoimmune process.</p> <p>Methods</p> <p>Animals have been screened weekly for the presence of E-IAA between 3 and 5 weeks of age. E-IAA positive or negative NOD mice at least twice were selected and RNAs isolated from the PLN were used for microarray analysis. Comparison of transcriptional profiles between positive and negative animals and functional annotations of the resulting differentially expressed genes, using software together with manual literature data mining, have been performed.</p> <p>Results</p> <p>The expression of 165 genes was modulated between E-IAA positive and negative PLN. In particular, genes coding for insulin and for proteins known to be implicated in tissue remodelling and Th1 immunity have been found to be highly differentially expressed. Forty one genes showed over 5 fold differences between the two sets of samples and 30 code for extracellular proteins. This class of proteins represents potential diagnostic markers and drug targets for T1D.</p> <p>Conclusion</p> <p>Our data strongly suggest that the immune related mechanisms taking place at this early age in the PLN, correlate with homeostatic changes influencing tissue integrity of the adjacent pancreatic tissue. Functional analysis of the identified genes suggested that similar mechanisms might be operating during pre-inflammatory processes deployed in tissues i) hosting parasitic microorganisms and ii) experiencing unrestricted invasion by tumour cells.</p

    Apoptotic cell-based therapies against transplant rejection: role of recipient’s dendritic cells

    Get PDF
    One of the ultimate goals in transplantation is to develop novel therapeutic methods for induction of donor-specific tolerance to reduce the side effects caused by the generalized immunosuppression associated to the currently used pharmacologic regimens. Interaction or phagocytosis of cells in early apoptosis exerts potent anti-inflammatory and immunosuppressive effects on antigen (Ag)-presenting cells (APC) like dendritic cells (DC) and macrophages. This observation led to the idea that apoptotic cell-based therapies could be employed to deliver donor-Ag in combination with regulatory signals to recipient’s APC as therapeutic approach to restrain the anti-donor response. This review describes the multiple mechanisms by which apoptotic cells down-modulate the immuno-stimulatory and pro-inflammatory functions of DC and macrophages, and the role of the interaction between apoptotic cells and APC in self-tolerance and in apoptotic cell-based therapies to prevent/treat allograft rejection and graft-versus-host disease in murine experimental systems and in humans. It also explores the role that in vivo-generated apoptotic cells could have in the beneficial effects of extracorporeal photopheresis, donor-specific transfusion, and tolerogenic DC-based therapies in transplantation

    Genome-wide analyses reveal a potential role for the <em>MAPT</em>, <em>MOBP</em>, and <em>APOE </em>loci in sporadic frontotemporal dementia

    Get PDF
    \ua9 2024 The Author(s)Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 7 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 7 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 7 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex

    Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia

    Get PDF
    Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex

    Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia

    Get PDF
    Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10−12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10−12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10−8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex

    Selenium biochemistry and its role for human health

    Get PDF
    Despite its very low level in humans, selenium plays an important and unique role among the (semi)metal trace essential elements because it is the only one for which incorporation into proteins is genetically encoded, as the constitutive part of the 21st amino acid, selenocysteine. Twenty-five selenoproteins have been identified so far in the human proteome. The biological functions of some of them are still unknown, whereas for others there is evidence for a role in antioxidant defence, redox state regulation and a wide variety of specific metabolic pathways. In relation to these functions, the selenoproteins emerged in recent years as possible biomarkers of several diseases such as diabetes and several forms of cancer. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important requisite to elucidate its preventing/therapeutic effect for human diseases. This review summarizes the most recent findings on the biochemistry of active selenium species in humans, and addresses the latest evidence on the link between selenium intake, selenoproteins functionality and beneficial health effects. Primary emphasis is given to the interpretation of biochemical mechanisms rather than epidemiological/observational data. In this context, the review includes the following sections: (1) brief introduction; (2) general nutritional aspects of selenium; (3) global view of selenium metabolic routes; (4) detailed characterization of all human selenoproteins; (5) detailed discussion of the relation between selenoproteins and a variety of human diseases
    corecore