239 research outputs found

    Prothymosin α fragmentation in apoptosis

    Get PDF
    AbstractWe observed fragmentation of an essential proliferation-related human nuclear protein prothymosin α in the course of apoptosis induced by various stimuli. Prothymosin α cleavage occurred at the DDVD99 motif. In vitro, prothymosin α could be cleaved at D99 by caspase-3 and -7. Caspase hydrolysis disrupted the nuclear localization signal of prothymosin α and abrogated the ability of the truncated protein to accumulate inside the nucleus. Prothymosin α fragmentation may therefore be proposed to disable intranuclear proliferation-related function of prothymosin α in two ways: by cleaving off a short peptide containing important determinants, and by preventing active nuclear uptake of the truncated protein

    Early Alteration of Nucleocytoplasmic Traffic Induced by Some RNA Viruses

    Get PDF
    AbstractA HeLa cell line expressing the green fluorescent protein fused to the SV40 T-antigen nuclear localization signal (EGFP-NLS) was established. Fluorescence in these cells was confined to the nuclei. After poliovirus infection, cytoplasmic fluorescence in a proportion of cells could be detected by 1 h postinfection (p.i.) and in virtually all of the fluorescent cells by 2 h p.i. The relocation could be prevented by cycloheximide but not by inhibition of poliovirus replication by guanidine · HCl. Nuclear exit of a protein composed of three copies of GFP fused to the NLS also occurred upon poliovirus infection. A similar redistribution of EGFP-NLS took place upon infection with coxsakievirus B3 and, to a lesser extent, with vesicular stomatitis virus. The EGFP-NLS efflux was not due to the loss of NLS. Thus, some positive-strand and negative-strand RNA viruses trigger a rapid nonspecific relocation of nuclear proteins

    A Critical Role of a Cellular Membrane Traffic Protein in Poliovirus RNA Replication

    Get PDF
    Replication of many RNA viruses is accompanied by extensive remodeling of intracellular membranes. In poliovirus-infected cells, ER and Golgi stacks disappear, while new clusters of vesicle-like structures form sites for viral RNA synthesis. Virus replication is inhibited by brefeldin A (BFA), implicating some components(s) of the cellular secretory pathway in virus growth. Formation of characteristic vesicles induced by expression of viral proteins was not inhibited by BFA, but they were functionally deficient. GBF1, a guanine nucleotide exchange factor for the small cellular GTPases, Arf, is responsible for the sensitivity of virus infection to BFA, and is required for virus replication. Knockdown of GBF1 expression inhibited virus replication, which was rescued by catalytically active protein with an intact N-terminal sequence. We identified a mutation in GBF1 that allows growth of poliovirus in the presence of BFA. Interaction between GBF1 and viral protein 3A determined the outcome of infection in the presence of BFA

    Host Lipids in Positive-Strand RNA Virus Genome Replication

    Get PDF
    Membrane association is a hallmark of the genome replication of positive-strand RNA viruses [(+)RNA viruses]. All well-studied (+)RNA viruses remodel host membranes and lipid metabolism through orchestrated virus-host interactions to create a suitable microenvironment to survive and thrive in host cells. Recent research has shown that host lipids, as major components of cellular membranes, play key roles in the replication of multiple (+)RNA viruses. This review focuses on how (+)RNA viruses manipulate host lipid synthesis and metabolism to facilitate their genomic RNA replication, and how interference with the cellular lipid metabolism affects viral replication

    CAST constraints on the axion-electron coupling

    Get PDF
    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axiorecombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling gae and axion-photon interaction strength ga using the CAST phase-I data (vacuum phase). For ma <~ 10 meV/c2 we find ga gae < 8.1 × 10−23 GeV−1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission

    The Arf-GEF GBF1 undergoes multi-domain structural shifts to activate Arf at the Golgi

    Get PDF
    Golgi homeostasis require the activation of Arf GTPases by the guanine-nucleotide exchange factor requires GBF1, whose recruitment to the Golgi represents a rate limiting step in the process. GBF1 contains a conserved, catalytic, Sec7 domain (Sec7d) and five additional (DCB, HUS, HDS1-3) domains. Herein, we identify the HDS3 domain as essential for GBF1 membrane association in mammalian cells and document the critical role of HDS3 during the development of Drosophila melanogaster. We show that upon binding to Golgi membranes, GBF1 undergoes conformational changes in regions bracketing the catalytic Sec7d. We illuminate GBF1 interdomain arrangements by negative staining electron microscopy of full-length human GBF1 to show that GBF1 forms an anti-parallel dimer held together by the paired central DCB-HUS core, with two sets of HDS1-3 arms extending outward in opposite directions. The catalytic Sec7d protrudes from the central core as a largely independent domain, but is closely opposed to a previously unassigned α-helix from the HDS1 domain. Based on our data, we propose models of GBF1 engagement on the membrane to provide a paradigm for understanding GBF1-mediated Arf activation required for cellular and organismal function

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Experimental determination of the permeability of engineering textiles: Benchmark II

    Get PDF
    In this second international permeability benchmark, the in-plane permeability values of a carbon fabric were studied by twelve research groups worldwide. One participant also investigated the deformation of the tested carbon fabric. The aim of this work was to obtain comparable results in order to make a step toward standardization of permeability measurements. Unidirectional injections were thus conducted to determine the unsaturated in-plane permeability tensor of the fabric. Procedures used by participants were specified in the guidelines defined for this benchmark. Participants were asked to use the same values for parameters such as fiber volume fraction, injection pressure and fluid viscosity to minimize sources of scatter. The comparison of the results from each participant was encouraging. The scatter between data obtained while respecting the guidelines was below 25%. However, a higher dispersion was observed when some parameters differed from the recommendations of this exercise.The authors are grateful to J.M. Beraud from Hexcel Fabrics for his support that made possible this exercise. The contributions of J.B. Alms, N.C. Correia, S. Advani, E. Ruiz and P.C.T. Goncalves to the preparation of the guidelines document and templates are acknowledged by the participants of this benchmark.Vernet, N.; Ruiz, E.; Advani, S.; Alms, JB.; Aubert, M.; Barburski, M.; Barari, B.... (2014). Experimental determination of the permeability of engineering textiles: Benchmark II. Composites Part A: Applied Science and Manufacturing. 61:172-184. doi:10.1016/j.compositesa.2014.02.010S1721846

    Search for the doubly heavy baryon Ξbc+\it{\Xi}_{bc}^{+} decaying to J/ψΞc+J/\it{\psi} \it{\Xi}_{c}^{+}

    Get PDF
    A first search for the Ξbc+J/ψΞc+\it{\Xi}_{bc}^{+}\to J/\it{\psi}\it{\Xi}_{c}^{+} decay is performed by the LHCb experiment with a data sample of proton-proton collisions, corresponding to an integrated luminosity of 9fb19\,\mathrm{fb}^{-1} recorded at centre-of-mass energies of 7, 8, and 13TeV13\mathrm{\,Te\kern -0.1em V}. Two peaking structures are seen with a local (global) significance of 4.3(2.8)4.3\,(2.8) and 4.1(2.4)4.1\,(2.4) standard deviations at masses of 6571MeV ⁣/c26571\,\mathrm{Me\kern -0.1em V\!/}c^2 and 6694MeV ⁣/c26694\,\mathrm{Me\kern -0.1em V\!/}c^2, respectively. Upper limits are set on the Ξbc+\it{\Xi}_{bc}^{+} baryon production cross-section times the branching fraction relative to that of the Bc+J/ψDs+B_{c}^{+}\to J/\it{\psi} D_{s}^{+} decay at centre-of-mass energies of 8 and 13TeV13\mathrm{\,Te\kern -0.1em V}, in the Ξbc+\it{\Xi}_{bc}^{+} and in the Bc+B_{c}^{+} rapidity and transverse-momentum ranges from 2.0 to 4.5 and 0 to 20GeV ⁣/c20\,\mathrm{Ge\kern -0.1em V\!/}c, respectively. Upper limits are presented as a function of the Ξbc+\it{\Xi}_{bc}^{+} mass and lifetime.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-005.html (LHCb public pages

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages
    corecore