64 research outputs found

    Observing extreme events in incomplete state spaces with application to rainfall estimation from satellite images

    No full text
    International audienceReconstructing the dynamics of nonlinear systems from observations requires the complete knowledge of its state space. In most cases, this is either impossible or at best very difficult. Here, by using a toy model, we investigate the possibility of deriving useful insights about the variability of the system from only a part of the complete state vector. We show that while some of the details of the variability might be lost, other details, especially extreme events, are successfully recovered. We then apply these ideas to the problem of rainfall estimation from satellite imagery. We show that, while reducing the number of observables reduces the correlation between actual and inferred precipitation amounts, good estimates for extreme events are still recoverable

    Stochastic Interpolation of Precipitation Data From Multiple Sensors

    Get PDF
    Introduction: This report summarizes the work conducted under Grant No. ECE-8419189, Stochastic Interpolation of Precipitation Data from Multiple Sensors, which was awarded to Utah State University in September, 1985, and completed February 29, 1988. it also covers work under a supplemental award made in February, 1986. The final report is organized into four sections. The following section presents the objective of the research and a brief problem statment. Section 3 contains a summary of second-year work including the project team, work plan, work completed, and publications. In Section4, project conclusions are summarized. A summary of on-going future work is given in Section 5, together with our plans for publication of research results from this project. Copies of preliminary draft manuscripts and completed technical reports which have been prepared as a result of second-year activities are contained in the Appendices. A cummulative summary of project publications is presented in Appendix A

    Value of long-term streamflow forecasts to reservoir operations for water supply in snow-dominated river catchments

    Get PDF
    We present a forecast-based adaptive management framework for water supply reservoirs and evaluate the contribution of long-term inflow forecasts to reservoir operations. Our framework is developed for snow-dominated river basins that demonstrate large gaps in forecast skill between seasonal and inter-annual time horizons. We quantify and bound the contribution of seasonal and inter-annual forecast components to optimal, adaptive reservoir operation. The framework uses an Ensemble Streamflow Prediction (ESP) approach to generate retrospective, one-year-long streamflow forecasts based on the Variable Infiltration Capacity (VIC) hydrology model. We determine the optimal sequence of daily release decisions using the Model Predictive Control (MPC) optimization scheme. We then assess the forecast value by comparing system performance based on the ESP forecasts with the performances based on climatology and perfect forecasts. We distinguish among the relative contributions of the seasonal component of the forecast versus the inter-annual component by evaluating system performance based on hybrid forecasts, which are designed to isolate the two contributions. As an illustration, we first apply the forecast-based adaptive management framework to a specific case study, i.e., Oroville Reservoir in California, and we then modify the characteristics of the reservoir and the demand to demonstrate the transferability of the findings to other reservoir systems. Results from numerical experiments show that, on average, the overall ESP value in informing reservoir operation is 35% less than the perfect forecast value and the inter-annual component of the ESP forecast contributes 20–60% of the total forecast value.</p

    Random walk forecast of urban water in Iran under uncertainty

    Get PDF
    There are two significant reasons for the uncertainties of water demand. On one hand, an evolving technological world is plagued with accelerated change in lifestyles and consumption patterns; and on the other hand, intensifying climate change. Therefore, with an uncertain future, what enables policymakers to define the state of water resources, which are affected by withdrawals and demands? Through a case study based on thirteen years of observation data in the Zayandeh Rud River basin in Isfahan province located in Iran, this paper forecasts a wide range of urban water demand possibilities in order to create a portfolio of plans which could be utilized by different water managers. A comparison and contrast of two existing methods are discussed, demonstrating the Random Walk Methodology, which will be referred to as the â On uncertainty pathâ , because it takes the uncertainties into account and can be recommended to managers. This On Uncertainty Path is composed of both dynamic forecasting method and system simulation. The outcomes show the advantage of such methods particularly for places that climate change will aggravate their water scarcity, such as Iran

    Observing extreme events in incomplete state spaces with application to rainfall estimation from satellite images

    No full text
    Reconstructing the dynamics of nonlinear systems from observations requires the complete knowledge of its state space. In most cases, this is either impossible or at best very difficult. Here, by using a toy model, we investigate the possibility of deriving useful insights about the variability of the system from only a part of the complete state vector. We show that while some of the details of the variability might be lost, other details, especially extreme events, are successfully recovered. We then apply these ideas to the problem of rainfall estimation from satellite imagery. We show that, while reducing the number of observables reduces the correlation between actual and inferred precipitation amounts, good estimates for extreme events are still recoverable

    Estimation of Historic Flows and Sediment Loads to San Francisco Bay, 1849 – 2011

    Get PDF
    River flow and sediment transport in estuaries influence morphological development over decadal and century time scales, but hydrological and sedimentological records are typically too short to adequately characterize long-term trends. In this study, we recover archival records and apply a rating curve approach to develop the first instrumental estimates of daily delta inflow and sediment loads to San Francisco Bay (1849 – 1929). The total sediment load is constrained using sedimentation/erosion estimated from bathymetric survey data to produce continuous daily sediment transport estimates from 1849 to 1955, the time period prior to sediment load measurements. We estimate that ~55% (45 – 75%) of the ~1500±400 million tons (Mt) of sediment delivered to the estuary between 1849 and 2011 was the result of anthropogenic alteration in the watershed that increased sediment supply. Also, the seasonal timing of sediment flux events has shifted because significant spring-melt floods have decreased, causing estimated springtime transport (April 1st to June 30th) to decrease from ~25% to ~15% of the annual total. By contrast, wintertime sediment loads (December 1st to March 31st) have increased from ~70% to ~80%. A ~35% reduction of annual flow since the 19th century along with decreased sediment supply has resulted in a ~50% reduction in annual sediment delivery. The methods developed in this study can be applied to other systems for which unanalyzed historic data exist
    • …
    corecore