4 research outputs found

    Interannual variations in precipitation: the effect of the North Atlantic and Southern oscillations as seen in a satellite precipitation data set and in models

    Get PDF
    Precipitation is a parameter that varies on many different spatial and temporal scales. Here we look at interannual variations associated with the North Atlantic Oscillation (NAO) and the Southern Oscillation (SO), comparing the spatial and temporal changes as shown by three data sets. The Global Precipitation Climatology Project (GPCP) product is based upon satellite data, whereas both the National Centers for Environmental Prediction (NCEP) and European Centre for Medium-Range Weather Forecasts (ECMWF) climatologies are produced through reanalysis of atmospheric circulation models. All three products show a consistent response to the NAO in the North Atlantic region, with negative states of the NAO corresponding to increases in precipitation over Greenland and southern Europe, but to a decrease over northern Europe. None of the climatologies display any net change in total rainfall as a result of the NAO, but rather a redistribution of precipitation patterns. However, this redistribution of rain is important because of its potential effect on oceanic overturning circulation. Similarly, all three data sets concur that the SO has a major effect on precipitation in certain tropical regions; however, there is some disagreement amongst the data sets as to the regional sensitivity, with NCEP showing a much weaker response than GPCP and ECMWF over Indonesia. The GPCP and NCEP climatologies show that the various phases of El Niño and La Niña act to redistribute, rather than enhance, the freshwater cycle. Given that the models incorporate no actual observations of rain, and are known to be imperfect, it is surprising how well they represent these interannual phenomena

    Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality

    Get PDF
    Reducing methane (CH4) emissions is an attractive option for jointly addressing climate and ozone (O3) air quality goals. With multidecadal full-chemistry transient simulations in the MOZART-2 tropospheric chemistry model, we show that tropospheric O3 responds approximately linearly to changes in CH4 emissions over a range of anthropogenic emissions from 0–430 Tg CH4 a−1 (0.11–0.16 Tg tropospheric O3 or ∼11–15 ppt global mean surface O3 decrease per Tg a−1 CH4 reduced). We find that neither the air quality nor climate benefits depend strongly on the location of the CH4 emission reductions, implying that the lowest cost emission controls can be targeted. With a series of future (2005–2030) transient simulations, we demonstrate that cost-effective CH4 controls would offset the positive climate forcing from CH4 and O3 that would otherwise occur (from increases in NOx and CH4 emissions in the baseline scenario) and improve O3 air quality. We estimate that anthropogenic CH4 contributes 0.7 Wm−2 to climate forcing and ∼4 ppb to surface O3 in 2030 under the baseline scenario. Although the response of surface O3 to CH4 is relatively uniform spatially compared to that from other O3 precursors, it is strongest in regions where surface air mixes frequently with the free troposphere and where the local O3 formation regime is NOx-saturated. In the model, CH4 oxidation within the boundary layer (below ∼2.5 km) contributes more to surface O3 than CH4 oxidation in the free troposphere. In NOx-saturated regions, the surface O3 sensitivity to CH4 can be twice that of the global mean, with >70% of this sensitivity resulting from boundary layer oxidation of CH4. Accurately representing the NOx distribution is thus crucial for quantifying the O3 sensitivity to CH4
    corecore