67 research outputs found

    Kinetic and structural insight into a role of the re-face Tyr328 residue of the homodimer type ferredoxin-NADP+ oxidoreductase from Rhodopseudomonas palustris in the reaction with NADP+/NADPH

    Get PDF
    é‡‘ę²¢å¤§å­¦ē†å·„ē ”ē©¶åŸŸē‰©č³Ŗ化学ē³»Among the thioredoxin reductase-type ferredoxin-NAD(P)+ oxidoreductase (FNR) family, FNR from photosynthetic purple nonā€‘sulfur bacterium Rhodopseudomonas palustris (RpFNR) is distinctive because the predicted residue on the re-face of the isoalloxazine ring portion of the FAD prosthetic group is a tyrosine. Here, we report the crystal structure of wild type RpFNR and kinetic analyses of the reaction of wild type, and Y328F, Y328H and Y328S mutants with NADP+/NADPH using steady state and pre-steady state kinetic approaches. The obtained crystal structure of wild type RpFNR confirmed the presence of Tyr328 on the re-face of the isoalloxazine ring of the FAD prosthetic group through the unique hydrogen bonding of its hydroxyl group. In the steady state assays, the substitution results in the decrease of Kd for NADP+ and KM for NADPH in the diaphorase assay; however, the kcat values also decreased significantly. In the stopped-flow spectrophotometry, mixing oxidized RpFNRs with NADPH and reduced RpFNRs with NADP+ resulted in rapid charge transfer complex formation followed by hydride transfer. The observed rate constants for the hydride transfer in both directions were comparable (>400 sāˆ’1). The substitution did not drastically affect the rate of hydride transfer, but substantially slowed down the subsequent release and re-association of NADP+/NADPH in both directions. The obtained results suggest that Tyr328 stabilizes the stacking of C-terminal residues on the isoalloxazine ring portion of the FAD prosthetic group, which impedes the access of NADP+/NADPH on the isoalloxazine ring portions, in turn, enhancing the release of the NADP+/NADPH and/or reaction with electron transfer proteins. Ā© 2019 Elsevier B.V.Embargo Period 12 month

    Functional importance of Crenarchaea-specific extra-loop revealed by an X-ray structure of a heterotetrameric crenarchaeal splicing endonuclease

    Get PDF
    Archaeal splicing endonucleases (EndAs) are currently classified into three groups. Two groups require a single subunit protein to form a homodimer or homotetramer. The third group requires two nonidentical protein components for the activity. To elucidate the molecular architecture of the two-subunit EndA system, we studied a crenarchaeal splicing endonuclease from Pyrobaculum aerophilum. In the present study, we solved a crystal structure of the enzyme at 1.7-ƅ resolution. The enzyme adopts a heterotetrameric form composed of two catalytic and two structural subunits. By connecting the structural and the catalytic subunits of the heterotetrameric EndA, we could convert the enzyme to a homodimer that maintains the broad substrate specificity that is one of the characteristics of heterotetrameric EndA. Meanwhile, a deletion of six amino acids in a Crenarchaea-specific loop abolished the endonuclease activity even on a substrate with canonical BHB motif. These results indicate that the subunit architecture is not a major factor responsible for the difference of substrate specificity between single- and two-subunit EndA systems. Rather, the structural basis for the broad substrate specificity is built into the crenarchaeal splicing endonuclease itself

    Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata : Implications of domain structure for its membrane pore-formation mechanism

    Full text link
    CEL-III is a Ca^ļ¼‹ -dependent and galactose-specific lectin purified from the sea cucumber, Cucumaria echinata, which exhibits hemolytic and hemagglutinating activities. Six molecules of CEL-III are assumed to oligomerize to form an ion-permeable pore in the cell membrane. We have determined the crystal structure of CEL-III by using single isomorphous replacement aided by anomalous scattering in lead at 1.7 ƅ resolution. CEL-III consists of three distinct domains as follows: the N-terminal two carbohydrate-binding domains (1 and 2), which adopt Ī²-trefoil folds such as the B-chain of ricin and are members of the (QXW)_3 motif family; and domain 3, which is a novel fold composed of two Ī±-helices and one Ī²-sandwich. CEL-III is the first Ca^ -dependent lectin structure with two Ī²-trefoil folds. Despite sharing the structure of the B-chain of ricin, CEL-III binds five Ca^ ions at five of the six subdomains in both domains 1 and 2. Considering the relatively high similarity among the five subdomains, they are putative binding sites for galactose-related carbohydrates, although it remains to be elucidated whether bound Ca^ is directly involved in interaction with carbohydrates. The paucity of hydrophobic interactions in the interfaces between the domains and biochemical data suggest that these domains rearrange upon carbohydrate binding in the erythrocyte membrane. This conformational change may be responsible for oligomerization of CEL-III molecules and hemolysis in the erythrocyte membranes.This research was originally published in Journal of Biological Chemistry. Tatsuya Uchida, Takayuki Yamasaki, Seiichiro Eto, Hajime Sugawara, Genji Kurisu, Atsushi Nakagawa, Masami Kusunoki and Tomomitsu Hatakeyama. Crystal structure of the hemolytic lectin CEL-III isolated from the marine invertebrate Cucumaria echinata : Implications of domain structure for its membrane pore-formation mechanism. Journal of Biological Chemistry. 2004; 279, 37133-37141. Ā© the American Society for Biochemistry and Molecular Biology

    Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster

    Get PDF
    A high-resolution structure of trimeric cyanobacterial Photosystem I (PSI) from Thermosynechococcus elongatus was reported as the first atomic model of PSI almost 20 years ago. However, the monomeric PSI structure has not yet been reported despite long-standing interest in its structure and extensive spectroscopic characterization of the loss of red chlorophylls upon monomerization. Here, we describe the structure of monomeric PSI from Thermosynechococcus elongatus BP-1. Comparison with the trimer structure gave detailed insights into monomerization-induced changes in both the central trimerization domain and the peripheral regions of the complex. Monomerization-induced loss of red chlorophylls is assigned to a cluster of chlorophylls adjacent to PsaX. Based on our findings, we propose a role of PsaX in the stabilization of red chlorophylls and that lipids of the surrounding membrane present a major source of thermal energy for uphill excitation energy transfer from red chlorophylls to P700

    Bacterial Ī²-Glucosidase Reveals the Structural and Functional Basis of Genetic Defects in Human Glucocerebrosidase 2 (GBA2)

    Get PDF
    Human glucosylcerebrosidase 2 (GBA2) of the CAZy family GH116 is responsible for the breakdown of glycosphingolipids on the cytoplasmic face of the endoplasmic reticulum and Golgi apparatus. Genetic defects in GBA2 result in spastic paraplegia and cerebellar ataxia, while cross-talk between GBA2 and GBA1 glucosylceramidases may affect Gaucher disease. Here, we report the first three-dimensional structure for any GH116 enzyme, Thermoanaerobacterium xylanolyticum TxGH116 Ī²-glucosidase, alone and in complex with diverse ligands. These structures allow identification of the glucoside binding and active site residues, which are shown to be conserved with GBA2. Mutagenic analysis of TxGH116 and structural modeling of GBA2 provide a detailed structural and functional rationale for pathogenic missense mutations of GBA2

    The Global Open Science Cloud: Vision and Initial Successes

    Get PDF
    The Global Open Science Cloud has the potential to advance the way scientific data and resources are shared and accessed, and how global collaboration happens. However, addressing the challenges associated with its creation and ensuring inclusivity, interoperability, data privacy, and sustainability are crucial for its success. The collaborative efforts of stakeholders from different disciplines, regions, and sectors will be essential in realising the vision of a truly global and open science platform. The achievements of GOSC so far, including successful collaborations, funded projects, and the development of a common reference framework, demonstrate its potential and progress towards its goals

    Non-covalent forces tune the electron transfer complex between ferredoxin and sulfite reductase to optimize enzymatic activity.

    Get PDF
    Although electrostatic interactions between negatively-charged ferredoxin (Fd) and positively-charged sulfite reductase (SiR) have been predominantly highlighted to characterize complex formation, the detailed nature of intermolecular forces remains to be fully elucidated. We herein investigated interprotein forces for formation of an electron-transfer complex between Fd and SiR and their relationship to SiR activity using various approaches over NaCl concentrations between 0 and 400 mM. Fd-dependent SiR activity assays revealed a bell-shaped activity curve with a maximum around 40-70 mM NaCl and a reverse bell-shaped dependence of interprotein affinity. Meanwhile, intrinsic SiR activity, as measured in a methyl viologen-dependent assay, exhibited saturation above 100 mM NaCl. Thus, two assays suggested that interprotein interaction is crucial in controlling Fd-dependent SiR activity. Calorimetric analyses showed the monotonic decrease in interprotein affinity on increasing NaCl concentrations, distinguished from a reverse bell-shaped interprotein affinity observed from Fd-dependent SiR activity assay . Furthermore, Fd:SiR complex formation and interprotein affinity were thermodynamically adjusted by both enthalpy and entropy through electrostatic and non-electrostatic interactions. A residue-based NMR investigation on addition of SiR to 15N-labeled Fd at the various NaCl concentration also demonstrated that a combination of electro- and non-electrostatic forces stabilized the complex with similar interfaces and modulated the binding affinity and mode. Our findings elucidate that non-electrostatic forces are also essential for the formation and modulation of the Fd:SiR complex. We suggest that a complex configuration optimized for maximum enzymatic activity near physiological salt conditions is achieved by structural rearrangement through controlled non-covalent interprotein interactions

    Federating structural models and data:Outcomes from a workshop on archiving integrative structures

    Get PDF
    Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here
    • ā€¦
    corecore