44 research outputs found

    Braces for idiopathic scoliosis in adolescents. A cochrane review

    Get PDF
    STUDY DESIGN. Cochrane systematic review. OBJECTIVE. To evaluate the efficacy of bracing in adolescent patients with adolescent idiopathic scoliosis (AIS). SUMMARY OF BACKGROUND DATA. AIS is a 3-dimensional deformity of the spine. Although AIS can progress during growth and cause a surface deformity, it is usually not symptomatic. However, in adulthood, if the final spinal curvature surpasses a certain critical threshold, the risk of health problems and curve progression is increased. Braces are traditionally recommended to stop curvature progression in some countries and criticized in others. They generally need to be worn full time, with treatment extending over years. METHODS. The following databases (up to July 2008) were searched with no language limitations: the Cochrane Central Register of Controlled Trials, MEDLINE (from January 1966), EMBASE (from January 1980), and CINHAL (from January 1982), and reference lists of the articles. An extensive handsearch of the gray literature was also conducted. Randomized controlled trials (RCTs) and prospective cohort studies were searched for comparing braces with no treatment, other treatment, surgery, and different types of braces. Two review authors independently assessed trial quality and extracted data. RESULTS. We included 2 studies. There was very low quality evidence from 1 prospective cohort study with 286 girls that a brace curbed curve progression at the end of growth (success rate, 74 95% confidence interval {CI}: 52%-84%), better than observation (success rate, 34% 95% CI: 16%-49%) and electrical stimulation (success rate, 33% 95% CI: 12%-60%). There is low-quality evidence from 1 RCT with 43 girls that a rigid brace is more successful than an elastic one (SpineCor) at curbing curve progression when measured in Cobb degrees, but there were no significant differences between the 2 groups in the subjective perception of daily difficulties associated with wearing the brace. CONCLUSION. There is very low quality evidence in favor of using braces, making generalization very difficult. Further research could change the actual results and our confidence in them; in the meantime, patients' choices should be informed by multidisciplinary discussion. Future research should focus on short- and long-term patient-centered outcomes, in addition to measures such as Cobb angles. RCTs and prospective cohort studies should follow both the Scoliosis Research Society and Society on Scoliosis Orthopedic and Rehabilitation Treatment criteria for bracing studies. © 2010, Lippincott Williams & Wilkins

    Melatonin the "light of night" in human biology and adolescent idiopathic scoliosis

    Get PDF
    Melatonin "the light of night" is secreted from the pineal gland principally at night. The hormone is involved in sleep regulation, as well as in a number of other cyclical bodily activities and circadian rhythm in humans. Melatonin is exclusively involved in signalling the 'time of day' and 'time of year' (hence considered to help both clock and calendar functions) to all tissues and is thus considered to be the body's chronological pacemaker or 'Zeitgeber'. The last decades melatonin has been used as a therapeutic chemical in a large spectrum of diseases, mainly in sleep disturbances and tumours and may play a role in the biologic regulation of mood, affective disorders, cardiovascular system, reproduction and aging. There are few papers regarding melatonin and its role in adolescent idiopathic scoliosis (AIS). Melatonin may play a role in the pathogenesis of scoliosis (neuroendocrine hypothesis) but at present, the data available cannot clearly support this hypothesis. Uncertainties and doubts still surround the role of melatonin in human physiology and pathophysiology and future research is needed

    Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy

    Get PDF
    Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females. The new theory states that AIS in girls results from developmental disharmony expressed in spine and trunk between autonomic and somatic nervous systems. The autonomic component of this double neuro-osseous theory for AIS pathogenesis in girls involves selectively increased sensitivity of the hypothalamus to circulating leptin (genetically-determined up-regulation possibly involving inhibitory or sensitizing intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic nervous system to the growing axial skeleton where it may initiate the scoliosis deformity (leptin-hypothalamic-sympathetic nervous system concept = LHS concept). In some younger preoperative AIS girls, the hypothalamic up-regulation to circulating leptin also involves the somatotropic (growth hormone/IGF) axis which exaggerates the sympathetically-induced asymmetric skeletal effects and contributes to curve progression, a concept with therapeutic implications. In the somatic nervous system, dysfunction of a postural mechanism involving the CNS body schema fails to control, or may induce, the spinal deformity of AIS in girls (escalator concept). Biomechanical factors affecting ribs and/or vertebrae and spinal cord during growth may localize AIS to the thoracic spine and contribute to sagittal spinal shape alterations. The developmental disharmony in spine and trunk is compounded by any osteopenia, biomechanical spinal growth modulation, disc degeneration and platelet calmodulin dysfunction. Methods for testing the theory are outlined. Implications are discussed for neuroendocrine dysfunctions, osteopontin, sympathoactivation, medical therapy, Rett and Prader-Willi syndromes, infantile idiopathic scoliosis, and human evolution. AIS pathogenesis in girls is predicated on two putative normal mechanisms involved in trunk growth, each acquired in evolution and unique to humans
    corecore