13 research outputs found

    A tale of worldwide success: Behind the scenes of Carex (Cyperaceae) biogeography and diversification

    Get PDF
    The megadiverse genus Carex (c. 2000 species, Cyperaceae) has a nearly cosmopolitan distribution, displaying an inverted latitudinal richness gradient with higher species diversity in cold-temperate areas of the Northern Hemisphere. Despite great expansion in our knowledge of the phylogenetic history of the genus and many molecular studies focusing on the biogeography of particular groups during the last few decades, a global analysis of Carex biogeography and diversification is still lacking. For this purpose, we built the hitherto most comprehensive Carex-dated phylogeny based on three markers (ETS–ITS–matK), using a previous phylogenomic Hyb-Seq framework, and a sampling of two-thirds of its species and all recognized sections. Ancestral area reconstruction, biogeographic stochastic mapping, and diversification rate analyses were conducted to elucidate macroevolutionary biogeographic and diversification patterns. Our results reveal that Carex originated in the late Eocene in E Asia, where it probably remained until the synchronous diversification of its main subgeneric lineages during the late Oligocene. E Asia is supported as the cradle of Carex diversification, as well as a “museum” of extant species diversity. Subsequent “out-of-Asia” colonization patterns feature multiple asymmetric dispersals clustered toward present times among the Northern Hemisphere regions, with major regions acting both as source and sink (especially Asia and North America), as well as several independent colonization events of the Southern Hemisphere. We detected 13 notable diversification rate shifts during the last 10 My, including remarkable radiations in North America and New Zealand, which occurred concurrently with the late Neogene global cooling, which suggests that diversification involved the colonization of new areas and expansion into novel areas of niche space.This work was carried out with financial support by the National Science Foundation (Award #1255901 to ALH and Award #1256033 to EHR), the Spanish Ministry of Economy and Competitiveness (project CGL2016–77401‐P to SM-B and ML), the USDA National Institute of Food and Agriculture (McIntire Stennis project 1018692 to DS) as well as postdoctoral fellowships towards SM‐B (Universidad Pablo de Olavide, PP16/12‐APP), and PJ‐M (National Science Foundation, Award #1256033, and the Smithsonian Postdoctoral Fellowship program)

    Community-acquired pneumonia in Chile: the clinical relevance in the detection of viruses and atypical bacteria

    Get PDF
    Background Adult community-acquired pneumonia (CAP) is a relevant worldwide cause of morbidity and mortality, however the aetiology often remains uncertain and the therapy is empirical. We applied conventional and molecular diagnostics to identify viruses and atypical bacteria associated with CAP in Chile.\ud \ud Methods We used sputum and blood cultures, IgG/IgM serology and molecular diagnostic techniques (PCR, reverse transcriptase PCR) for detection of classical and atypical bacteria (Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumoniae) and respiratory viruses (adenovirus, respiratory syncytial virus (RSV), human metapneumovirus, influenza virus, parainfluenzavirus, rhinovirus, coronavirus) in adults >18 years old presenting with CAP in Santiago from February 2005 to September 2007. Severity was qualified at admission by Fine's pneumonia severity index.\ud \ud Results Overall detection in 356 enrolled adults were 92 (26%) cases of a single bacterial pathogen, 80 (22%) cases of a single viral pathogen, 60 (17%) cases with mixed bacterial and viral infection and 124 (35%) cases with no identified pathogen. Streptococcus pneumoniae and RSV were the most common bacterial and viral pathogens identified. Infectious agent detection by PCR provided greater sensitivity than conventional techniques. To our surprise, no relationship was observed between clinical severity and sole or coinfections.\ud \ud Conclusions The use of molecular diagnostics expanded the detection of viruses and atypical bacteria in adults with CAP, as unique or coinfections. Clinical severity and outcome were independent of the aetiological agents detected.This work was supported by the Fondo Nacional de Ciencia y Tecnología (FONDECYT) (grant number 1050734); and the Fondo Nacional de Investigación en Salud (FONIS) (grant number SA04 I 2084)

    Megaphylogenetic Specimen-level Approaches to the Carex (Cyperaceae) Phylogeny Using ITS, ETS, and matK Sequences: Implications for Classification

    No full text
    We present the first large-scale phylogenetic hypothesis for the genus Carex based on 996 of the 1983 accepted species (50.23%). We used a supermatrix approach using three DNA regions: ETS, ITS and matK. Every concatenated sequence was derived from a single specimen. The topology of our phylogenetic reconstruction largely agreed with previous studies. We also gained new insights into the early divergence structure of the two largest clades, core Carex and Vignea clades, challenging some previous evolutionary hypotheses about inflorescence structure. Most sections were recovered as non-monophyletic. Homoplasy of characters traditionally selected as relevant for classification, historical misunderstanding of how morphology varies across Carex, and regional rather than global views of Carex diversity seem to be the main reasons for the high levels of polyphyly and paraphyly in the current infrageneric classification

    Data from: Megaphylogenetic specimen-level approaches to the Carex (Cyperaceae) phylogeny using ITS, ETS, and matK sequences: implications for classification

    No full text
    We present the first large-scale phylogenetic hypothesis for the genus Carex based on 996 of the 1983 accepted species (50.23%). We used a supermatrix approach using three DNA regions: ETS, ITS and matK. Every concatenated sequence was derived from a single specimen. The topology of our phylogenetic reconstruction largely agreed with previous studies. We also gained new insights into the early divergence structure of the two largest clades, core Carex and Vignea clades, challenging some previous evolutionary hypotheses about inflorescence structure. Most sections were recovered as non-monophyletic. Homoplasy of characters traditionally selected as relevant for classification, historical misunderstanding of how morphology varies across Carex, and regional rather than global views of Carex diversity seem to be the main reasons for the high levels of polyphyly and paraphyly in the current infrageneric classification

    A framework infrageneric classification of Carex (Cyperaceae) and its organizing principles

    No full text
    Phylogenetic studies of Carex L. (Cyperaceae) have consistently demonstrated that most subgenera and sections are para- or polyphyletic. Yet, taxonomists continue to use subgenera and sections in Carex classification. Why? The Global Carex Group (GCG) here takes the position that the historical and continued use of subgenera and sections serves to (i) organize our understanding of lineages in Carex, (ii) create an identification mechanism to break the ~2000 species of Carex into manageable groups and stimulate its study, and (iii) provide a framework to recognize morphologically diagnosable lineages within Carex. Unfortunately, the current understanding of phylogenetic relationships in Carex is not yet sufficient for a global reclassification of the genus within a Linnean infrageneric (sectional) framework. Rather than leaving Carex classification in its current state, which is misleading and confusing, we here take the intermediate steps of implementing the recently revised subgeneric classification and using a combination of informally named clades and formally named sections to reflect the current state of our knowledge. This hybrid classification framework is presented in an order corresponding to a linear arrangement of the clades on a ladderized phylogeny, largely based on the recent phylogenies published by the GCG. It organizes Carex into six subgenera, which are, in turn, subdivided into 62 formally named Linnean sections plus 49 informal groups. This framework will serve as a roadmap for research on Carex phylogeny, enabling further development of a complete reclassification by presenting relevant morphological and geographical information on clades where possible and standardizing the use of formal sectional names
    corecore