64 research outputs found

    A programme of studies including assessment of diagnostic accuracy of school hearing screening tests and a cost-effectiveness model of school entry hearing screening programmes

    Get PDF
    Background Identification of permanent hearing impairment at the earliest possible age is crucial to maximise the development of speech and language. Universal newborn hearing screening identifies the majority of the 1 in 1000 children born with a hearing impairment, but later onset can occur at any time and there is no optimum time for further screening. A universal but non-standardised school entry screening (SES) programme is in place in many parts of the UK but its value is questioned. Objectives To evaluate the diagnostic accuracy of hearing screening tests and the cost-effectiveness of the SES programme in the UK. Design Systematic review, case–control diagnostic accuracy study, comparison of routinely collected data for services with and without a SES programme, parental questionnaires, observation of practical implementation and cost-effectiveness modelling. Setting Second- and third-tier audiology services; community. Participants Children aged 4–6 years and their parents. Main outcome measures Diagnostic accuracy of two hearing screening devices, referral rate and source, yield, age at referral and cost per quality-adjusted life-year. Results The review of diagnostic accuracy studies concluded that research to date demonstrates marked variability in the design, methodological quality and results. The pure-tone screen (PTS) (Amplivox, Eynsham, UK) and HearCheck (HC) screener (Siemens, Frimley, UK) devices had high sensitivity (PTS ≥ 89%, HC ≥ 83%) and specificity (PTS ≥ 78%, HC ≥ 83%) for identifying hearing impairment. The rate of referral for hearing problems was 36% lower with SES (Nottingham) relative to no SES (Cambridge) [rate ratio 0.64, 95% confidence interval (CI) 0.59 to 0.69; p < 0.001]. The yield of confirmed cases did not differ between areas with and without SES (rate ratio 0.82, 95% CI 0.63 to 1.06; p = 0.12). The mean age of referral did not differ between areas with and without SES for all referrals but children with confirmed hearing impairment were older at referral in the site with SES (mean age difference 0.47 years, 95% CI 0.24 to 0.70 years; p < 0.001). Parental responses revealed that the consequences to the family of the referral process are minor. A SES programme is unlikely to be cost-effective and, using base-case assumptions, is dominated by a no screening strategy. A SES programme could be cost-effective if there are fewer referrals associated with SES programmes or if referrals occur more quickly with SES programmes. Conclusions A SES programme using the PTS or HC screener is unlikely to be effective in increasing the identified number of cases with hearing impairment and lowering the average age at identification and is therefore unlikely to represent good value for money. This finding is, however, critically dependent on the results of the observational study comparing Nottingham and Cambridge, which has limitations. The following are suggested: systematic reviews of the accuracy of devices used to measure hearing at school entry; characterisation and measurement of the cost-effectiveness of different approaches to the ad-hoc referral system; examination of programme specificity as opposed to test specificity; further observational comparative studies of different programmes; and opportunistic trials of withdrawal of SES programmes

    Auditory Feedback Control of Vocal Pitch during Sustained Vocalization: A Cross-Sectional Study of Adult Aging

    Get PDF
    Background: Auditory feedback has been demonstrated to play an important role in the control of voice fundamental frequency (F0), but the mechanisms underlying the processing of auditory feedback remain poorly understood. It has been well documented that young adults can use auditory feedback to stabilize their voice F0 by making compensatory responses to perturbations they hear in their vocal pitch feedback. However, little is known about the effects of aging on the processing of audio-vocal feedback during vocalization. Methodology/Principal Findings: In the present study, we recruited adults who were between 19 and 75 years of age and divided them into five age groups. Using a pitch-shift paradigm, the pitch of their vocal feedback was unexpectedly shifted 650 or 6100 cents during sustained vocalization of the vowel sound/u/. Compensatory vocal F0 response magnitudes and latencies to pitch feedback perturbations were examined. A significant effect of age was found such that response magnitudes increased with increasing age until maximal values were reached for adults 51–60 years of age and then decreased for adults 61–75 years of age. Adults 51–60 years of age were also more sensitive to the direction and magnitude of the pitch feedback perturbations compared to younger adults. Conclusion: These findings demonstrate that the pitch-shift reflex systematically changes across the adult lifespan. Understanding aging-related changes to the role of auditory feedback is critically important for our theoretica

    Acoustic trauma slows AMPAR-mediated EPSCs in the auditory brainstem, reducing GluA4 subunit expression as a mechanism to rescue binaural function

    Get PDF
    Damaging levels of sound (acoustic trauma, AT) diminish peripheral synapses, but what is the impact on the central auditory pathway? Developmental maturation of synaptic function and hearing were characterized in the mouse lateral superior olive (LSO) from postnatal day 7 (P7) to P96 using voltage-clamp and auditory brainstem responses. IPSCs and EPSCs show rapid acceleration during development, so that decay kinetics converge to similar sub-millisecond time-constants (τ, 0.87 ± 0.11 and 0.77 ± 0.08 ms, respectively) in adult mice. This correlated with LSO mRNA levels for glycinergic and glutamatergic ionotropic receptor subunits, confirming a switch from Glyα2 to Glyα1 for IPSCs and increased expression of GluA3 and GluA4 subunits for EPSCs. The NMDA receptor (NMDAR)-EPSC decay τ accelerated from >40 ms in prehearing animals to 2.6 ± 0.4 ms in adults, as GluN2C expression increased. In vivo induction of AT at around P20 disrupted IPSC and EPSC integration in the LSO, so that 1 week later the AMPA receptor (AMPAR)-EPSC decay was slowed and mRNA for GluA1 increased while GluA4 decreased. In contrast, GlyR IPSC and NMDAR-EPSC decay times were unchanged. Computational modelling confirmed that matched IPSC and EPSC kinetics are required to generate mature interaural level difference functions, and that longer-lasting EPSCs compensate to maintain binaural function with raised auditory thresholds after AT. We conclude that LSO excitatory and inhibitory synaptic drive matures to identical time-courses, that AT changes synaptic AMPARs by expression of subunits with slow kinetics (which recover over 2 months) and that loud sounds reversibly modify excitatory synapses in the brain, changing synaptic function for several weeks after exposure

    Occlusion Effect in Response to Stimulation by Soft Tissue Conduction-Implications

    No full text
    To gain insight into the broader implications of the occlusion effect (OE&mdash;difference between unoccluded and occluded external canal thresholds), the OE in response to pure tones at 0.5, 1.0, 2.0 and 4.0 kHz to two bone conduction sites (mastoid and forehead) and two soft tissue conduction (STC) sites (under the chin and at the neck) were assessed. The OE was present at the soft tissue sites and at the bone conduction sites, with no statistical difference between them. The OE was significantly greater at lower frequencies, and negligible at higher frequencies. It seems that the vibrations induced in the soft tissues (STC) during stimulation at the soft tissue sites are conducted not only to the inner ear and elicit hearing, but also reach the walls of the external canal and initiate air pressures in the occluded canal which drive the tympanic membrane and excite the inner ear, leading to hearing. Use of a stethoscope by the internist to hear intrinsic body sounds (heartbeat, blood flow) serves as a clear demonstration of STC and its relation to hearing

    How Is the Cochlea Activated in Response to Soft Tissue Auditory Stimulation in the Occluded Ear?

    No full text
    Soft tissue conduction is an additional mode of auditory stimulation which can be initiated either by applying an external vibrator to skin sites not overlying skull bone such as the neck (so it is not bone conduction) or by intrinsic body vibrations resulting, for example, from the heartbeat and vocalization. The soft tissue vibrations thereby induced are conducted by the soft tissues to all parts of the body, including the walls of the external auditory canal. In order for soft tissue conduction to elicit hearing, the soft tissue vibrations which are induced must penetrate into the cochlea in order to excite the inner ear hair cells and auditory nerve fibers. This final stage can be achieved either by an osseous bone conduction mechanism, or, more likely, by the occlusion effect: the vibrations of the walls of the occluded canal induce air pressures in the canal which drive the tympanic membrane and middle ear ossicles and activate the inner ear, acting by means of a more air conduction-like mechanism. In fact, when the clinician applies his stethoscope to the body surface of his patient in order to detect heart sounds or pulmonary air flow, he is detecting soft tissue vibrations

    Soft Tissue Conduction Activates the Auditory Pathway in the Brain

    No full text
    Soft tissue conduction is a mode of hearing which differs from air and bone conduction since the soft tissues of the body convey the audio-frequency vibrations to the ear. It is elicited by inducing soft tissue vibrations with an external vibrator applied to sites on the body or by intrinsic vibrations resulting from vocalization or the heartbeat. However, the same external vibrator applied to the skin sites also excites cutaneous mechanoreceptors, and attempts have been made to assist patients with hearing loss by audio–tactile substitution. The present study was conducted to assess the contribution of the auditory nerve and brainstem pathways to soft tissue conduction hearing. The study involved 20 normal hearing students, equipped with ear plugs to reduce the possibility of their response to air-conducted sounds produced by the external vibrator. Pure tone audiograms and speech reception (recognition) thresholds were determined in response to the delivery of the stimuli by a clinical bone vibrator applied to the cheek, neck and shoulder. Pure tone and speech recognition thresholds were obtained; the participants were able to repeat the words they heard by soft tissue conduction, confirming that the auditory pathways in the brain had been stimulated, with minimal involvement of the somatosensory pathways
    • …
    corecore