222 research outputs found

    Magnification-Temperature Correlation: the Dark Side of ISW Measurements

    Get PDF
    Integrated Sachs-Wolfe (ISW) measurements, which involve cross-correlating the CMB with the foreground large-scale structure (e.g. galaxies/quasars), have proven to be an interesting probe of dark energy. We show that magnification bias, which is the inevitable modulation of the foreground number counts by gravitational lensing, alters both the shape and amplitude of the observed ISW signal. This is true especially at high redshifts because (1) the intrinsic galaxy-temperature signal diminishes greatly back in the matter dominated era, (2) the lensing efficiency increases with redshift and (3) the number count slope generally steepens with redshift in a magnitude limited sample. At z >~ 2, the magnification-temperature correlation dominates over the intrinsic galaxy-temperature correlation and causes the observed ISW signal to increase with z, despite dark energy subdominance -- a result of the fact that magnification probes structures between the observer and the sources. Ignoring magnification bias can then lead to erroneous conclusions about dark energy. While the lensing modulation opens up an interesting high z window for ISW measurements, high z measurements are not expected to add much new information to low z ones if dark energy is the cosmological constant. This is because lensing introduces significant covariance across redshifts. The most compelling reason to pursue high z ISW measurements is to look for a potential surprise such as early dark energy domination or the signature of modified gravity. We conclude with a discussion of existing measurements, the highest z of which is at the margin of being sensitive to magnification bias. We also develop a formalism which might be of general interest: to predict biases in estimating parameters when certain physical effects are ignored in interpreting data.Comment: 14 pages, 12 figures, references added, minor typos corrected, accepted for publication by PR

    Reactividad del cemento aluminóso en agua: Caracterización de la fase acuosa de los poros y de la fase sólida

    Get PDF
    The hydration reaction of high alumina cement at a temperature of 20 ºC and water/cement ratio of 0.5 has been studied over a period of one month. The changes of the solid phase were followed by X-ray diffraction and thermal analysis. Besides, pore-solution was expressed by application of high mechanical pressure (500 MPa) during different periods of the reaction in order to study its Chemical composition evolution as a result of the hydration process.La reacción de hidratación del cemento aluminoso (CA), a la temperatura de 20 ºC y relación agua/cemento de 0,5, ha sido estudiada durante un mes. Los cambios de la fase sólida se siguieron por difracción de rayos X y análisis térmico. Además, la fase acuosa de los poros (FAP) fue extraída mediante aplicación de altas presiones mecánicas (500 MPa) en diferentes etapas de la reacción, con el fin de estudiar la evolución de su composición química durante el proceso de hidratación

    Large scale structure and the generalised Chaplygin gas as dark energy

    Full text link
    The growth of large scale structure is studied in a universe containing both cold dark matter (CDM) and generalized Chaplygin gas (GCg). GCg is assumed to contribute only to the background evolution of the universe while the CDM component collapses and forms structures. We present some new analytical as well as numerical results for linear and non-linear growth in such model. The model passes the standard cosmological distance test without the need of a cosmological constant (LCDM). But we find that the scenario is severely constrained by current observations of large scale structure. Any small deviations of the GCg parameters away from the standard Lambda dominated cosmology (LCDM) produces substantial suppression for the growth of structures.Comment: 6 pages, matches version accepted for publication in Phys.Rev.D (in press

    The mass density field in simulated non-Gaussian scenarios

    Full text link
    In this work we study the properties of the mass density field in the non-Gaussian world models simulated by Grossi et al. 2007. In particular we focus on the one-point density probability distribution function of the mass density field in non-Gausian models with quadratic non-linearities quantified by the usual parameter f_NL. We find that the imprints of primordial non-Gaussianity are well preserved in the negative tail of the probability function during the evolution of the density perturbation. The effect is already noticeable at redshifts as large as 4 and can be detected out to the present epoch. At z=0 we find that the fraction of the volume occupied by regions with underdensity delta < -0.9, typical of voids, is about 1.3 per cent in the Gaussian case and increases to ~2.2 per cent if f_NL=-1000 while decreases to ~0.5 per cent if f_NL=+1000. This result suggests that void-based statistics may provide a powerful method to detect non-Gaussianity even at low redshifts which is complementary to the measurements of the higher-order moments of the probability distribution function like the skewness or the kurtosis for which deviations from the Gaussian case are detected at the 25-50 per cent level.Comment: revised version, 9 Pages, 8 figures, MNRAS in pres

    Noninteracting dark matter

    Get PDF
    Since an acceptable dark matter candidate may interact only weakly with ordinary matter and radiation, it is of interest to consider the limiting case where the dark matter interacts only with gravity and itself, the matter originating by the gravitational particle production at the end of inflation. We use the bounds on the present dark mass density and the measured large-scale fluctuations in the thermal cosmic background radiation to constrain the two parameters in a self-interaction potential that is a sum of quadratic and quartic terms in a single scalar dark matter field that is minimally coupled to gravity. In quintessential inflation, where the temperature at the end of inflation is relatively low, the field starts acting like cold dark matter relatively late, shortly before the epoch of equal mass densities in matter and radiation. This could have observable consequences for galaxy formation. We respond to recent criticisms of the quintessential inflation scenario, since these issues also apply to elements of the noninteracting dark matter picture.Comment: 37 pages, 3 figure

    Probing Planckian physics: resonant production of particles during inflation and features in the primordial power spectrum

    Get PDF
    The phenomenon of resonant production of particles {\it after} inflation has received much attention in the past few years. In a new application of resonant production of particles, we consider the effect of a resonance {\em during} inflation. We show that if the inflaton is coupled to a massive particle, resonant production of the particle during inflation modifies the evolution of the inflaton, and may leave an imprint in the form of sharp features in the primordial power spectrum. Precision measurements of microwave background anisotropies and large-scale structure surveys could be sensitive to the features, and probe the spectrum of particles as massive as the Planck scale.Comment: 19 pages, 11 eps figure

    Constraints on growth index parameters from current and future observations

    Full text link
    We use current and future simulated data of the growth rate of large scale structure in combination with data from supernova, BAO, and CMB surface measurements, in order to put constraints on the growth index parameters. We use a recently proposed parameterization of the growth index that interpolates between a constant value at high redshifts and a form that accounts for redshift dependencies at small redshifts. We also suggest here another exponential parameterization with a similar behaviour. The redshift dependent parametrizations provide a sub-percent precision level to the numerical growth function, for the full redshift range. Using these redshift parameterizations or a constant growth index, we find that current available data from galaxy redshift distortions and Lyman-alpha forests is unable to put significant constraints on any of the growth parameters. For example both Λ\LambdaCDM and flat DGP are allowed by current growth data. We use an MCMC analysis to study constraints from future growth data, and simulate pessimistic and moderate scenarios for the uncertainties. In both scenarios, the redshift parameterizations discussed are able to provide significant constraints and rule out models when incorrectly assumed in the analysis. The values taken by the constant part of the parameterizations as well as the redshift slopes are all found to significantly rule out an incorrect background. We also find that, for our pessimistic scenario, an assumed constant growth index over the full redshift range is unable to rule out incorrect models in all cases. This is due to the fact that the slope acts as a second discriminator at smaller redshifts and therefore provide a significant test to identify the underlying gravity theory.Comment: 13 pages, 5 figures, matches JCAP accepted versio

    The power spectrum from the angular distribution of galaxies in the CFHTLS-Wide fields at redshift ~0.7

    Get PDF
    We measure the real-space galaxy power spectrum on large scales at redshifts 0.5 to 1.2 using optical colour-selected samples from the CFHT Legacy Survey. With the redshift distributions measured with a preliminary ~14000 spectroscopic redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS), we deproject the angular distribution and directly estimate the three-dimensional power spectrum. We use a maximum likelihood estimator that is optimal for a Gaussian random field giving well-defined window functions and error estimates. This measurement presents an initial look at the large-scale structure field probed by the VIPERS survey. We measure the galaxy bias of the VIPERS-like sample to be b_g=1.38 +- 0.05 (sigma_8=0.8) on scales k<0.2h/mpc averaged over 0.5<z<1.2. We further investigate three photometric redshift slices, and marginalising over the bias factors while keeping other LCDM parameters fixed, we find the matter density Omega_m=0.30+-0.06.Comment: Minor changes to match journal versio

    A highly obscured and strongly clustered galaxy population discovered with the Spitzer Space Telescope

    Get PDF
    The ~800 optically unseen (R>25.5) 24mum-selected sources in the complete Spitzer First Look Survey sample (Fadda et al. 2006) with F[24mum]>0.35 mJy are found to be very strongly clustered. If, as indicated by several lines of circumstantial evidence, they are ultraluminous far-IR galaxies at z ~ [1.6-2.7], the amplitude of their spatial correlation function is very high. The associated comoving clustering length is estimated to be r_0=14.0_{-2.4}^{+2.1} Mpc, value which puts these sources amongst the most strongly clustered populations of our known universe. Their 8mum-24mum colours suggest that the AGN contribution dominates above F[24mum] ~ 0.8 mJy, consistent with earlier analyses. The properties of these objects (number counts, redshift distribution, clustering amplitude) are fully consistent with those of proto-spheroidal galaxies in the process of forming most of their stars and of growing their active nucleus, as described by the Granato et al. (2004) model. In particular, the inferred space density of such galaxies at z ~ 2 is much higher than what expected from most semi-analytic models. Matches of the observed projected correlation function w(\theta) with models derived within the so-called Halo Occupation Scenario show that these sources have to be hosted by haloes more massive than ~10^{13.4} M_\odot. This value is significantly higher than that for the typical galactic haloes hosting massive elliptical galaxies, suggesting a duration of the starburst phase of massive high-redshift dusty galaxies of T_B ~ 0.5 Gyr.Comment: 14 pages, 10 figures, minor revisions, to appear on MNRA
    corecore