The growth of large scale structure is studied in a universe containing both
cold dark matter (CDM) and generalized Chaplygin gas (GCg). GCg is assumed to
contribute only to the background evolution of the universe while the CDM
component collapses and forms structures. We present some new analytical as
well as numerical results for linear and non-linear growth in such model. The
model passes the standard cosmological distance test without the need of a
cosmological constant (LCDM). But we find that the scenario is severely
constrained by current observations of large scale structure. Any small
deviations of the GCg parameters away from the standard Lambda dominated
cosmology (LCDM) produces substantial suppression for the growth of structures.Comment: 6 pages, matches version accepted for publication in Phys.Rev.D (in
press