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The power spectrum from the angular distribution of galaxies in the
CFHTLS-Wide fields at redshift ∼0.7
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ABSTRACT
We measure the real-space galaxy power spectrum on large scales at redshifts 0.5–1.2 using
optical colour selected samples from the Canada–France–Hawaii Telescope Legacy Survey.
With the redshift distributions measured with a preliminary ∼14 000 spectroscopic redshifts
from the VIMOS Public Extragalactic Redshift Survey (VIPERS), we deproject the angular
distribution and directly estimate the three-dimensional power spectrum. We use a maximum
likelihood estimator that is optimal for a Gaussian random field giving well-defined window
functions and error estimates. This measurement presents an initial look at the large-scale
structure field probed by the VIPERS. We measure the galaxy bias of the VIPERS-like sample
to be bg = 1.38 ± 0.05 (σ 8 = 0.8) on scales k < 0.2 h Mpc−1 averaged over 0.5 < z <

1.2. We further investigate three photometric redshift slices, and marginalizing over the bias
factors while keeping other � cold dark matter parameters fixed, we find the matter density
�m = 0.30 ± 0.06.

Key words: methods: statistical – cosmology: observations – large-scale structure of Uni-
verse.

�E-mail: ben.granett@brera.inaf.it

1 IN T RO D U C T I O N

The shape of the galaxy clustering power spectrum encodes the
dynamical history of the Universe under the influence of baryons,
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dark matter and dark energy. On large scales the assumption of
Gaussianity can be made, and the statistic summarizes all of the
cosmological information that is available.

Measurements of the power spectrum at z ∼ 0 have led to funda-
mental tests of the � cold dark matter (�CDM) model (Efstathiou
et al. 2002; Tegmark et al. 2004). The angular distribution of galax-
ies on the sky, although less sensitive than the full three-dimensional
view, has played an important role as well. Indeed, strong tests of the
CDM model were made with the two-dimensional correlation func-
tion from the APM galaxy survey (Maddox et al. 1990). Photometric
surveys have the capability to probe significantly larger volumes at
higher sampling rates than targeted spectroscopic surveys. The ad-
vantages have become clear with the advancement of photometric
redshift estimation methods. The loss in three-dimensional preci-
sion can be compensated for with increased statistics, leading to
strong cosmological constraints that are comparable to the results
from spectroscopic surveys.

Additionally, the projected density field is only weakly sensitive
to redshift-space distortions; thus, it provides a means to infer the
real-space power spectrum directly. The dependence on peculiar
velocities becomes important for narrow redshift slices and can be
turned into a useful measure of the growth rate (Ross et al. 2011a).
Measurements of the baryon acoustic feature and redshift-space
distortions have now been made on photometric samples taken from
the Sloan Digital Sky Survey (Blake et al. 2007; Padmanabhan et al.
2007; Thomas, Abdalla & Lahav 2011).

In this analysis, we present a new measurement of the real-space
galaxy power spectrum using a photometric catalogue of galaxies at
0.5 < z < 1.2 from the Canada–France–Hawaii Telescope Legacy
Survey (CFHTLS) Wide survey. The survey consists of four fields
covering a total area of 133 deg2. The extent of the largest field,
W1, is ∼10◦ or 200 h−1 Mpc at z = 0.7, giving a maximum scale
we may probe of kmin ∼ 0.05 h Mpc−1. The data set has been used
for previous cosmological analyses, in particular for weak lensing
(Fu et al. 2008; Kilbinger et al. 2009; Tereno et al. 2009; Shan et al.
2011) and galaxy correlation function measurements (Coupon et al.
2011).

A key ingredient needed to interpret the projected density field
and constrain the three-dimensional power spectrum is the redshift
distribution of the galaxy sample. For this, we use spectroscopy
from the VIMOS Public Extragalactic Redshift Survey1 (VIPERS;
Guzzo et al., in preparation). VIPERS is an ongoing spectroscopic
programme to target 105 galaxies in the redshift range 0.5–1.2 in
a total area of 24 deg2 in the CFHTLS W1 and W4 fields. The ac-
curacy of the spectroscopic measurements from VIPERS provides
an unbiased estimate of the redshift distribution. With this knowl-
edge, we are confident that we can deproject the angular clustering
signal and constrain the three-dimensional power spectrum. The
primary advantage of studying the deprojected power spectrum Pk

is its closeness to theory. The shape of the angular power spectrum
is complicated by its dependence on survey properties, its depth
and geometry. Furthermore, in projection, scales are mixed. Ideally,
we would like to separate the power on large scales in the linear
regime from power on small scales that is influenced by complex
astrophysical processes.

How to derive the three-dimensional power spectrum from the
two-dimensional density field is a problem of deconvolution. A good
inversion method should be stable against noise in the data. Prelimi-
nary work done by Baugh & Efstathiou (1993, 1994) and Gaztañaga

1 VIPERS website: vipers.inaf.it

& Baugh (1998) used the Lucy deconvolution method that is known
to be robust. To further derive cosmological constraints, we must
be able to estimate the covariance of the deprojection. Methods of
propagating the error from the angular correlation function to the
three-dimensional power spectrum were developed by Dodelson
& Gaztañaga (2000) who perform the inversion with a prior on the
smoothness of the power spectrum and compute a covariance matrix
of the estimate. Further work by Eisenstein & Zaldarriaga (2001),
Dodelson et al. (2002) and Maller et al. (2005) made use of the
singular value decomposition (SVD) technique to remove modes
that destabilize the inversion.

Importantly, the deprojection method should produce well-
defined window functions that describe the mode mixing. The aim
is to separate the small and large scales that are mixed in projection,
and the residual leakage should be understood. A similar problem
was solved with the maximum likelihood methods developed for the
cosmic microwave background angular power spectrum (Tegmark
1997; Bond, Jaffe & Knox 1998) and then later applied to galaxy
surveys (Huterer, Knox & Nichol 2001; Tegmark et al. 2002). Ap-
plications to the deprojection of the power spectrum were presented
by Efstathiou & Moody (2001) and Szalay et al. (2003).

In this work, we adopt the maximum likelihood technique to con-
struct an estimator for the power spectrum. The result is optimal
under the assumption that the density is represented by a Gaussian
random field. This is a reasonable assumption for the galaxy distri-
bution on large scales. Moreover, the estimator also simultaneously
gives the covariance of the estimate as well as the window functions.
For small surveys, where the window functions must be handled
carefully, the approach is especially useful. We pay close attention
to the window functions for the results presented here. Maximum
likelihood estimates are computationally expensive. However, be-
cause of the relatively small field sizes we consider, we can perform
all computations on a consumer level four-core desktop computer.

In this paper, we first introduce the CFHTLS and VIPERS data
sets used. In Sections 3 and 4, we review the angular power spec-
trum formalism and the maximum likelihood deprojection using a
quadratic estimator. We then apply the method to Gaussian sim-
ulations and investigate potential biases due to uncertainty in the
redshift distribution and the fiducial cosmology. Lastly, we measure
the power spectrum with CFHTLS data and constrain the linear
galaxy bias and matter density.

We report magnitudes using the AB magnitude convention in the
CFHT u∗g′r′i′z′ photometric system. We assume a flat �CDM cos-
mology with H0 = 70.4 km s−1 Mpc−1, �m = 0.272, �b = 0.0456,
ns = 0.963 and σ 8 = 0.8 (Larson et al. 2011).

2 DATA

2.1 Photometric selection

The CFHTLS Wide includes four fields labelled W1, W2, W3 and
W4. The total area is 133 deg2 imaged with five-band photometry
ugriz to a depth of i = 24.5. We construct colour-selected galaxy
samples from these fields to match the spectroscopic target selection
used by the VIPERS.

VIPERS is a spectroscopic programme to measure the redshifts
of galaxies over an area of 24 deg2in the CFHTLS W1 and W4
fields. Galaxies are targeted from CFHTLS-Wide photometry to a
flux limit of iAB = 22.5 with colour criteria to produce a sample
at z > 0.5 having few low-redshift interlopers. The selection is
done in the u − g, r − i colour plane with the following limits
on extinction-corrected magnitudes: (1) r − i ≥ 0.7 and u − g ≥
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Table 1. Samples.

Sample z̄ Nspec nphot n̄/deg2

SV: VIPERS-like 0.70 13191 1870617 14099
S6: 0.5 < zphot < 0.6 0.56 2548 340611 2567
S7: 0.6 < zphot < 0.8 0.69 4969 613643 4628
S8: 0.8 < zphot < 1.0 0.84 3030 416897 3142

1.4 or (2) r − i ≥ 0.5(u − g) and u − g < 1.4 (Guzzo et al., in
preparation). We replicate these colour criteria on the full CFHTLS-
Wide photometry T0006 release (Goranova et al. 2009). Hereafter,
we refer to this selection as the VIPERS-like sample.

Every source has an estimated photometric redshift and star–
galaxy classification from the T0006 photometric redshift cata-
logue. The star–galaxy classification accounts for both the source
profile and fits to stellar spectral templates (Coupon et al. 2009).
We apply the same criteria as used for the VIPERS target selec-
tion and exclude all sources photometrically classified as stars
(7 per cent of sources). From the remaining sample identified as
galaxies, we remove sources that fail to fit galaxy spectral templates
with reduced χ2 > 100. This cut removes sources with incomplete
or spurious photometry amounting to ∼0.15 per cent of sources
which are typically near to the edges of masked regions, bright stars
or field borders.

We also use the photometric redshifts to select subsamples of
narrower slices in redshift, labelled S6 (0.5 < zphot < 0.6), S7 (0.6 <

zphot < 0.8) and S8 (0.8 < zphot < 1) (see Table 1). As with the
VIPERS-like sample, these are also limited to iAB = 22.5. We have
confirmed that these photometric redshift selections at z > 0.5 also
meet the VIPERS selection criteria. Thus, the VIPERS spectroscopy
can be used to calibrate the redshift distributions of these samples
without introducing a bias.

The VIPERS spectroscopic targets were selected from the
CFHTLS T0005 catalogue after field-to-field colour corrections
were applied by the VIPERS team. These colour corrections are no
longer necessary in the T0006 update, and it has been shown that
the selections from the two catalogue versions match well (Guzzo
et al., in preparation). We note that a limited area in the CFHTLS
has been observed with a replacement i-band filter called y. The
photometric redshifts were computed with the appropriate filter
transmission function. To construct our i < 22.5 limited samples,
we take a reasonable approach and do not distinguish between the
two bands.

The CFHTLS catalogues also include corrections for Galactic
extinction. We do not consider residual systematic effects of red-
dening here because all four fields have relatively low and uniform
extinction at the level of E(B − V) = 0.06 in W4 and <0.02 in the
other fields. The i = 22.5 limit is 2 mag brighter than the detec-
tion limit of the survey; thus, we do not expect the selection to be
affected by the extinction correction.

2.2 Density maps

We construct the density maps for the photometrically selected
samples by counting galaxies in cells defined by the HEALPIX scheme
with a resolution of 7 arcmin (nside = 512) (Górski et al. 2005). The
maps for the VIPERS-like colour selection are shown in Fig. 1. We
use a survey mask provided by CFHTLS and exclude sources that
fall within the haloes of bright stars. For cells that fall on a mask
boundary, we measure the fractional coverage using a uniformly
spaced grid of 16 × 16 test points within the cell. We use MANGLE2

Figure 1. Galaxy count maps in the CFHTLS-Wide fields with the VIPERS-
like colour selection. We use HEALPIX cells with size 7 arcmin. Gaps in the
survey coverage are left as blank pixels. The grid overlay has spacing of 1◦.

to test if points fall inside the mask (Swanson et al. 2008). This
provides us with a weight map wi = 1/f i, where f i is the fractional
sampling for pixel i. Cells that have less than 50 per cent inclusion
in the survey are removed from the map. The areas of the four fields
W1, W2, W3 and W4 are 57.7, 18.6, 36.8 and 19.6 deg2. After
putting galaxies in the HEALPIX cells, the number of pixels in the
four maps are 4787, 1592, 3045 and 1651.

With ni galaxies counted in cell i, the overdensity is computed
with δi = niwi/n̄ − 1. The mean density in a cell, n̄, is computed
from all four fields as n̄ = ∑

i wini/
∑

i wi . The variance of δi,
assuming Poisson statistics, is σ 2

i = w2
i /n̄.

The clustering of foreground stars can be a significant source of
systematic error on large angular scales (Ross et al. 2011a). For the
CFHTLS, we can estimate the stellar contamination rate indepen-
dently in each of the four fields and apply local corrections to the
galaxy density. We measure the contamination rate directly in the
W1 and W4 fields by counting the number of targets spectroscopi-
cally classified as stars in the VIPERS sample. We then extrapolate
these rates to the W2 and W3 fields by computing the fraction of
sources photometrically classified as stars and then scaling.

The total count in a cell broken down into stars and galaxies is
given by Nobserved = N� + Ngalaxy, and the stellar contamination
fraction is f � = N�/Nobserved. The values we derive are listed in
Table 2. We apply the correction in the following way: δi,corr =
δi/(1 − f �) and σ 2

i,corr = σ 2
i /(1 − f�)2 (Huterer et al. 2001). The

effect on the amplitude of the power spectrum is ∼5 per cent.
A fraction of galaxies will also be misclassified as stars and

removed from the sample. However, as long as the sample is

Table 2. Star contamination fractions.

Sample W1 W2 W3 W4

SV 0.019 0.056 0.020 0.044
S6 0.013 0.030 0.010 0.017
S7 0.015 0.042 0.015 0.032
S8 0.017 0.055 0.019 0.048
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representative of the full population, the power spectrum measure-
ment will not be biased. This may not be the case in reality since
misclassified galaxies may preferentially represent a subclass with
a different power spectrum amplitude. We do not investigate this
correction here.

2.3 Redshift distribution

We use the VIPERS spectroscopic redshift catalogue (internal re-
lease, version 1.1) to calibrate the redshift distribution of the pho-
tometric samples (see Table 1). In total, we use 13 191 galaxies
from VIPERS including 6516 from the W1 field and 6675 from
the W4 field. All targets that meet the photometric selection criteria
with secure redshifts are used. We select based on the quality flag
zflag. Reliable redshifts have zflag modulo 10 ≥ 2, and we take
zflagin{2..9} (galaxy type), {12..19} (active galactic nucleus) and
{22..29} (serendipitous detections). The flag also has a fractional
part indicating agreement with the photometric redshift on a scale
from 1 to 5, where 5 indicates good agreement (within 1σ ).

We estimate the redshift distribution from the histogram of spec-
troscopic redshifts with a bin size of �z = 0.05 (see Fig. 2). We
use the histograms directly in the analysis with linear interpolation
between bin centres. The redshift distributions of the W1 and W4
samples are remarkably similar despite that these fields are well
separated on the sky. We use the distributions from the two fields to
test the impact of cosmic variance on our results. As we will con-
clude in Section 5.1, small perturbations to the redshift distribution
do not strongly impact the results.

The selection function of the VIPERS is not uniform with target
apparent flux. There are two sampling rates that we consider: first,
the fraction of potential targets that are selected for observation
and, second, the fraction of observed targets that give a successful
redshift measurement. The first distribution is nearly uniform; the
VIMOS spectrograph can place slits on ∼40 per cent of the potential
targets and this fraction is found to be independent of the magnitude

Figure 2. Redshift distributions of the spectroscopic samples used. (a)
The distribution of the full VIPERS sample is shown. Overplotted are
the distributions from the W1 and W4 fields individually. (b) The spectro-
scopic redshift distributions of the three photometric redshift subsamples are
plotted.

of the source. However, we do find that the fraction of targets
that have a measured redshift with qualities meeting our criteria
drops from 100 per cent at i = 19 to 50 per cent at i = 22.5,
the flux limit of the survey. This trend may be corrected for by
weighting the contribution of each galaxy in the redshift distribution
by the inverse of the sampling rate. However, we find that the
correction has a negligible effect on the distribution. Weighting
the galaxies shifts the mean redshifts of the samples by less than
�z = 0.01. We also confirm that lowering the quality threshold of
the spectroscopic sample to zflag ≥ 1.5, which adds 11 per cent
additional sources, does not significantly alter the distribution. In
Section 5.1, we consider the effect of shifting the mean redshift by
�z = 0.05 to provide an overly conservative check on the effect of
uncertainties in the redshift distribution.

3 A N G U L A R P OW E R SP E C T RU M

From galaxy counts in an image, we may infer the projected over-
density of galaxies on the sky, δ(n̂) = ∫ ∞

0 δ3D(n̂, r)φ(r)r2 dr . Typ-
ically, this is an integration through a broad slice in redshift defined
by a photometric galaxy selection function or simply by the lim-
iting flux of the survey. We expand the density field in spherical
harmonics and express the power in mode l by the spectrum Cl .

We may write the angular power spectrum as a projection of
the three-dimensional power spectrum, Pk = 〈∣∣δ3D,k

∣∣2〉. On large
scales, the power spectrum evolves with the linear growth factor,
D1(z). We scale the power spectrum taken at the median redshift of
the sample, z̄, as Pk(z) = [D1(z)/D1(z̄)]2 Pk(z̄). This gives

Cl = 2

π

∫ [∫
φ(r)D1(z)/D1(z̄)jl(kr)r2dr

]2

Pk(z̄)
d k

k
, (1)

where r is comoving distance. In the small angle approximation,
the spherical Bessel function can be approximated as jl(x) =√

π
2l+1 δ(l + 1

2 − x), expressed with a Dirac delta function, and

we find Limber’s equation:

Cl =
∫

gl(k)Pk

d k

k
. (2)

The projection kernel, gl(k), is given by

gl(k) = 1

l + 1/2

[
r2φ(r)D1(z)/D1(z̄)

]2
at r = l + 1/2

k
. (3)

A correction may be added to account for redshift-space distortions
although it is sizable only on large scales at l < 50 that we are
not sensitive to here (Ross et al. 2011b; Thomas et al. 2011). We
may now approach the deprojection problem as a deconvolution of
Limber’s equation.

4 POW ER SPECTRUM ESTI MATO R

On large scales, the galaxy density may be described by a Gaussian
random field and the distribution is fully characterized by its vari-
ance. With this assumption, the likelihood function of the ob-
served overdensities on the sky may be written explicitly. We
order the m pixels of the density map and form a data vector,
x = [δ(n̂0), δ(n̂1), . . . , δ(n̂m−1)], and write the covariance of the
data as Cij = 〈xixj〉. The likelihood function is

L = 1√
(2π)m det C

exp

[
−1

2
xTC−1x

]
. (4)

The covariance between the overdensity in pixels i and j separated
by an angle θ ij is given by the sum of the signal and the noise
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components:

Cij =
∑

l

2l + 1

4π
Pl(cos θij )B2

l Cl + Nij , (5)

where Nij is the noise covariance matrix and Pl are Legendre poly-
nomials. The noise matrix is taken to be diagonal with Poisson
elements given by Nii = w2

i /n̄. The finite resolution of the pix-
elized map attenuates the power spectrum by the pixel window
function, Bl, which depends on the pixel geometry (Górski et al.
2005).

We now derive a power spectrum estimator that maximizes
the likelihood function, L. The quadratic form was introduced
by Tegmark (1997) and explicit derivations have been given in
Dodelson (2003, chapter 11), Dahlen & Simons (2008) and Bond
et al. (1998). We give an overview here, since many variations
exist.

We denote the set of parameters to be estimated by the vector λ.
For our study, λi will represent a bin of the power spectrum. We
begin with an initial estimate, λ(0), and intend to use an optimization
algorithm to find a better estimate, λ̂, that maximizes the likelihood
function. With the assumption that ln L has a quadratic form near
the peak, we may apply the Newton–Raphson root-finding method
to move towards the peak of the likelihood function (Press et al.
1992), with

λ̂ = λ(0) − ∂ ln L/∂λ

∂2 ln L/∂λ2

∣∣∣∣∣
λ(0)

. (6)

This expression may be used iteratively to locate the peak.
We evaluate the derivative terms in Appendix A, and now simply

state the final result for one iteration step:

λ̂i = 1

2

∑
j

Aij

{
xTEj x − Tr

(
EjN

)}
, (7)

Ej = C−1 ∂C

∂λj

C−1. (8)

The matrix A is a mixing matrix that sets the normalization and
may be specified to form linear combinations of the bin estimates.
We will use this matrix to shape the window functions. The second
term in equation (7) subtracts the noise bias.

We see that the estimator weights the data by their covari-
ance: C−1x. This approach has the favourable property that spa-
tial modes contribute to the measurement with an inverse-variance
weight. The weighting also appropriately ‘tapers’ the map near
the mask boundary giving compact window functions in harmonic
space.

We have not yet specified the parameter vector λ. We set λ to bins
of the three-dimensional power spectrum and evaluate the derivative
matrix in equation (8), as

∂Cij

∂λk

≡ ∂Cij

∂Pk

=
lmax∑
l=2

2l + 1

4π
Pl(cos θij )B2

l gl(k)�ln k. (9)

Here, we have replaced the integral in Limber’s equation (equa-
tion 2) with a discrete sum over ln k with logarithmic bin
width �ln k.

The expectation of the estimate is given by

〈λ̂〉 = AFλ, (10)

where we have introduced the Fisher matrix

Fii′ = 1

2
Tr

(
C−1 ∂C

∂λi

C−1 ∂C

∂λi′

)
. (11)

The variance of the estimate is

Var(λ̂, λ̂) = AFAT, (12)

and the window functions are W = AF.
The inverse of the Fisher matrix represents the minimum vari-

ance that we may hope to achieve on λ̂. With A = F−1, we see that
we have an estimator that is optimal in the sense that it is unbiased
and has minimum variance (Tegmark 1997). This approach may not
be practical, however, because the Fisher matrix is often singular
or numerically ill conditioned. Intuitively, this reflects the funda-
mental limit that we cannot probe the power spectrum at scales
smaller than �� ∼ (�θ )−1, where �θ is the angular size of the
survey.

Instead, we choose A with the aim of diagonalizing the covariance
matrix. By factoring the Fisher matrix as F = MMT, we can set

A = M−1. The covariance matrix is now Var(λ̂, λ̂) = M−1FM−1T
.

In practice, we compute M as the square root of the Fisher ma-
trix using an SVD method. We also rescale M to normalize the
window functions such that

∑
j Wij = 1. This approach was

shown by Tegmark (1997) to result in sharper window func-
tions than the common choice for A, a diagonal matrix with
Aii = [

∑
jFij]−1.

We find that the matrix M is ill conditioned when the window
functions are broad, especially for the SV sample which has a wide
redshift distribution. To find a stable inversion, we use a pseudo-
inverse technique by keeping only the largest singular values. The
consequence of using a pseudo-inverse is that the covariance matrix
will not be perfectly diagonalized. The covariance matrix for the
VIPERS estimate after carrying out this operation is shown in Fig. 3.
The choice of how many modes to keep in the pseudo-inverse affects
the shape of the window functions and the scales that are probed.
We find that the smaller singular values probe large scales, in the
same fashion as in the SVD analyses by Eisenstein & Zaldarriaga
(2001) and Maller et al. (2005). We set the scale ensuring that the
resulting window functions are positive and reach the largest scales
available to the survey.

The estimate and covariance model depend on the chosen fidu-
cial cosmology through the form of the likelihood function and the
projection kernel. Both the shape and normalization of the power
spectrum can be important. Although the normalization cancels in
the estimator (neglecting the noise term), it is important for the
Fisher matrix and covariance. For these reasons, maximum likeli-
hood estimators are often applied iteratively to arrive at consistent
results. We explore these dependencies with simulations in the next
section.

Figure 3. The correlation matrix for Pk estimated from the VIPERS-like
sample. Elements of the matrix are labelled with the per cent correlation.
Although the window functions overlap significantly, the bins are nearly
statistically independent by construction.
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5 SI M U L AT I O N S

5.1 Gaussian realizations

As a test of the method, we estimate the power spectrum for
Gaussian realizations of the projected density field. The simula-
tions are constructed using a CAMB power spectrum with the Halofit
model (Lewis, Challinor & Lasenby 2000; Smith et al. 2003) and
projected through the VIPERS redshift distribution. With these Cl ,
we use HEALPIX Synfast to generate simulated density maps. We
produced 1000 independent maps with a resolution of 7 arcmin
(nside = 512). We add noise fluctuations by drawing from a Gaus-
sian distribution assuming a variance given by Poisson statistics
with n̄ = 50 galaxies per cell. This is a higher level of noise than
we find in the CFHTLS catalogue. For the geometry of the mock
survey, we use the actual survey mask of the W2 field. It includes
1592 pixels covering 21 deg2.

We compute the Fisher matrix in logarithmic bins from k = 0.01
to 100 with �log k = 0.05. The results are plotted in Fig. 4. The
data points are rebinned to �log k = 0.1 and plotted from k = 0.06
to 0.7 h Mpc−1. The corresponding window functions are shown in
the bottom panel. The data are plotted at the peaks of the window
functions. On large and small scales, the window functions begin to
overlap and converge as the limits set by the survey geometry are
reached. On small scales, we see a secondary peak in the window
function at k ∼ 2 h Mpc−1 which arises from the pixel scale of the
map (see Fig. 5).

We convolve the theory power spectrum with the window func-
tions and find that the mean of the Monte Carlo runs agrees well
within a few per cent. We expect that the precision is limited by
the finite binning of the Fisher matrix and truncation of the window
functions, but these effects are well below the statistical uncertain-
ties. The errors computed analytically from the Fisher matrix agree
with the distribution of Monte Carlo runs to within a few per cent.

Figure 4. The top frame shows the recovered power spectrum from the
mean of 1000 independent Gaussian simulations. The theory is convolved
with the window functions (plotted at bottom) and we find that it matches the
measurement to within a few per cent. The error bars computed analytically
from the Fisher matrix (shaded area) agree with the distribution of Monte
Carlo runs (outline). The noise term in equation (7) is shown as a dashed
curve.

Figure 5. In the top panel, we plot the projection kernels, gl(k). We compare
the kernels derived from the W1 redshift distribution only (solid curves) and
those from W4 only (dashed curves). Lower panel: the window functions
found for the 21 deg2simulation field are plotted. To check robustness, we
again compare the results derived from the W1 and W4 fields separately.
The second peak in the window functions at k > 1 h Mpc−1 arises from the
pixel scale of the map; beyond k = 2 h Mpc−1, the window functions rapidly
drop to 0.

These errors are for a single field, and so we can expect to achieve
a factor of 2 better with the combination of four fields.

5.2 Dependence on redshift distribution

We checked the robustness of the measurement to uncertainties
in the redshift distribution by repeating the analysis with different
assumed distributions. The simulations were generated with the
measured redshift distribution from the complete VIPERS sample,
and we first reanalysed them with distributions derived from two
subsamples, the redshift distribution of W1 and W4. The numbers
of spectra taken in the two fields are similar and the spectroscopy
covers similar areas, but the fields are widely separated on the sky
and so any differences could be attributed to cosmic variance. We
compute the Fisher matrix using the two distributions and find that
the projection kernels and window functions agree (Fig. 5). The
bias introduced by a mismatched redshift distribution is at the per
cent level, below the statistical errors.

Additionally, the measured redshift distribution could be inac-
curate due to sampling biases in the VIPERS. In Section 2.3, we
concluded that the uncertainty in the mean redshift of the distri-
bution, z̄, is known to be better than �z = 0.01. As an overly
conservative check, we examine the consequences of shifting the
redshift distribution by �z = ±0.05. This was done by modulat-
ing the measured distribution of the full VIPERS sample by the
linear function f (z) = 1 ± 1.5(z − z̄). The modified distributions
have z̄1 = 0.656 and z̄2 = 0.752, while the original sample has
z̄ = 0.703 (see the lower panel of Fig. 6). We find that reducing z̄

by 7 per cent lowered the derived power spectrum by 10 per cent.
Increasing z̄ by 7 per cent increased the power spectrum by
6 per cent. This large shift in z̄ would thus lead to a systematic
error in the estimated bias factor at the level of 3–5 per cent.
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Figure 6. The influence of the assumed redshift distribution on the deprojec-
tion. Top panels: the simulations are analysed with the W1 and W4 redshift
distributions. Bottom panels: for an overly conservative test, we modify the
VIPERS redshift distribution to adjust the mean redshift by �z = ±0.05
(labelled Test 1 and Test 2), leading to systematic shifts in the amplitude of
the estimated power spectrum of +6 and −10 per cent. The redshift distri-
butions are plotted in the right-hand panels and the derived power spectra
are on the left. In the top and bottom, the filled grey distribution represents
the redshift distribution of the full VIPERS sample.

5.3 Dependence on fiducial cosmology

The dependence on the fiducial cosmology enters the analysis in
two ways. First, we rely on the cosmology to model the likelihood
function. In the maximum likelihood estimator, the data covariance
matrix plays the role of a weight. Modifying the fiducial power
spectrum changes the weighting function and could bias the esti-
mator. We can expect that assuming the wrong matter density, for
example, could bias the estimator and make the variance properties
suboptimal.

The second dependence on the fiducial cosmology is through
the projection kernel. In the previous section, we discussed how
shifting the redshift distribution affects the amplitude of the power
spectrum estimate. We can expect that varying the cosmology and
the redshift–distance relation will have a similar effect.

Our Gaussian simulations were constructed using the reference
�CDM power spectrum with the Halofit model. To test the depen-
dence on the cosmology, we first reanalyse the maps using fiducial
power spectra with different assumed values of the matter den-
sity, taking �m = 0.25, 0.30 and 0.35. All other parameters were
held fixed at the reference values. We find that despite assum-
ing the wrong matter density, we recover the correct shape of the
power spectrum from the mean of 1000 simulation runs to within
2 per cent (see Fig. 7, panel a). However, it is clear that the amplitude
is strongly biased. This is due to the dependence of the projection
kernels on �m. This geometric dependence on the background cos-
mology dominates over any bias in the estimator due to suboptimal
weighting. These findings support an iterative approach.

Next, we check the influence of variations in the amplitude of the
power spectrum at small scales. The shape of the power spectrum on
small scales has developed with the aid of N-body simulations but it
remains a source of systematic uncertainty. We vary the small-scale
amplitude using an interpolation parameter anl:

P̃k = Pk,lin + (
Pk,nl − Pk,lin

)
anl . (13)

We test a range of amplitudes with anl = {0, 0.5, 1, 2} (anl = 1 gives
the Halofit model). We find that the estimator is remarkably robust

Figure 7. The sensitivity of the estimator to the assumed fiducial model.
(a) We vary �m keeping other parameters fixed. The top frame shows the
fiducial power spectra (solid lines) and the points mark the derived power
spectrum measurements. The bottom frame shows the per cent differences
from the reference model for each trial. The correct shape is recovered,
but there is a shift in the amplitude of the estimate due to the geometric
dependence of the projection kernel on the cosmology. (b) We modulate the
small-scale amplitude of the fiducial power spectrum with an interpolation
parameter anl; anl = 0 and 1 correspond to the linear and Halofit models,
respectively. We find that the derived power spectrum is not sensitive to the
small-scale amplitude.

(see Fig. 7, panel b). The discrepancy introduced by the variation in
the small-scale amplitude is less than 2 per cent on large scales and
it is dominated by numerical uncertainties up to k ∼ 0.2 h Mpc−1.
This supports the conclusion that using suboptimal weights does
not significantly bias the result.

6 R ESULTS

We now carry out the estimation of the power spectrum on the
CFHTLS data for the VIPERS-like sample and three photometric
redshift subsamples (see Fig. 8). For the analysis, a fiducial CAMB

power spectrum with the Halofit model is assumed. The Fisher
matrix is computed with 60 bins logarithmically spaced from k =
0.01 to 10 with �log k = 0.05. We use a wide k-range to map out the
window functions but all these data are not useful for analysis. We
restrict the study to 13 points from k = 0.03 to 0.6 h Mpc−1. We can
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Figure 8. The deprojected three-dimensional power spectrum in logarithmic bins for the VIPERS-like sample and three photometric redshift selected samples:
zphot = 0.5–0.6, 0.6–0.8 and 0.8–1.0. The window function of each band is shown in the panel below each plot. The theoretical power spectrum (both linear
and Halofit models) is convolved with the window function and overplotted with the best-fitting linear bias listed in Table 3. We use the first nine data points,
up to k 
 0.2 h Mpc−1 indicated by the vertical dotted line, to estimate the linear bias. The corresponding comoving distance and angular scale (at z = 0.7) are
included as a guide.

go to smaller scales, although the Gaussian error estimate will not be
appropriate. We use a bin size of �log k = 0.1 which is appropriate
choice considering the width of the survey window functions. The
plotted error bars are derived from the diagonal elements of the
covariance matrix found computed from equation (12).

For each field, we compute the normalized quantity from equa-
tion (7), yk

j = 1
2 {xTEj x − Tr (EjN)}, where k indexes the fields

1–4, along with the Fisher matrix (equation 11). These results are
then summed together, and the final combined estimate is computed
by λ̂i = 1

2

∑4
k=1

∑
j Aij y

k
j , where A = (

∑4
k=1 Fk)−1/2 normalized

such that
∑

i(AF)ij = 1. This combination properly weights the
data. The covariance of the estimate for the VIPERS-like sample is
shown in Fig. 3. At low k, neighbouring bins are nearly 50 per cent
correlated, but the matrix becomes more diagonal at larger k. The
limitation in diagonalizing the covariance matrix comes in the inver-
sion of M = F1/2. This is computed with a pseudo-inverse method.
The inversion becomes easier for the narrower photometric redshift
slices where a nearly perfect inversion is possible. The window
functions are sharper for these redshift slices as well.

We do not run the maximum likelihood algorithm in an iterative
fashion. The data do not support strong constraints on �CDM pa-
rameters alone and we find that beginning with a fiducial �CDM
power spectrum, we have a very good fit to the data. This indicates

that our starting point is already near to the peak of the (very broad)
likelihood function. However, we do effectively carry out one itera-
tion of the estimator to find the galaxy bias and set the amplitude of
the fiducial power spectrum. This is necessary because the estimator
and covariance do not simply scale linearly with amplitude in the
presence of noise. A second run allows us to set the amplitude of the
fiducial power spectrum ensuring that the error estimate is correct.

We compute a one-parameter fit to estimate the galaxy bias
on linear scales. We restrict this fit to the first nine points
at k < 0.2 h Mpc−1. Given the Pk measurements in vector d
and the convolved �CDM model in vector m, we find the
amplitude, a, that maximizes the likelihood function, ln L =
−1/2 (d − am)T C−1

kk′ (d − am). The solution is given by

a = dTC−1
kk′ m

mTC−1
kk′ m

, (14)

with variance σ 2
a = (

mTC−1
kk′ m

)−1
. The resulting values of the

galaxy bias are listed in Table 3, where we have assumed a value of
σ 8 = 0.8. The bias increases with redshift as expected for a flux-
limited survey. In fact, the amplitude of the power spectrum is not
seen to change with increasing redshift, indicating that the evolution
of the growth factor and the galaxy bias factors approximately
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Table 3. Best-fitting galaxy bias.

Sample bg χ2

VP: VIPERS-like 1.38 ± 0.05 7.2
S6: 0.5 < zphot < 0.6 1.36 ± 0.05 7.1
S7: 0.6 < zphot < 0.8 1.52 ± 0.05 5.7
S8: 0.8 < zphot < 1.0 1.68 ± 0.05 2.0

cancel. We find an approximately constant error on the bias factor in
each redshift range; this is simply due to the fact that the amplitude
of the fiducial power spectrum (from which the errors are derived)
is approximately constant.

Also in Table 3, we list the χ2 values at the best fit. The number of
degrees of freedom is approximately 8. The χ2 values are lower than
expected, specifically for S8 for which we find χ2 = 2. Formally,
the probability of finding χ2 ≤ 2 with eight degrees of freedom is
0.019. This could indicate that the covariances, and consequently
the error bars, are overestimated for this sample.

7 PA R A M ETER ESTIMATION

Before we may carry out a joint analysis, we must estimate the
covariance between the overlapping photometric samples. We will
estimate the covariance of the estimators with a Fisher matrix ap-
proach in the full-sky limit and then rescale to find the errors for
our survey geometry.

We compute the covariance between two samples labelled A and
B. To simplify the expression, we write the product of the kernel
with the beam and integration step as g̃l(k) = gl(k)B2

l �ln k and
the sum of the signal and noise covariance as C̃l = ClB

2
l + ��

n̄
. It

is more convenient to use the harmonic space representation, and
we switch the data vector from xi to alm. The covariance matrix is
diagonal: Clm; l′m′ = δll′δmm′ C̃l .

A component of the Fisher matrix for a single sample A for two
power spectrum bins, k and k′, is

FA,kk′ =
∑

l

2l + 1

2
g̃A

l (k)g̃A
l (k′)

(
C̃l

A
)−2

. (15)

We can write the quadratic estimator for the power spectrum as

P̂ A
k = 1

2

∑
k′

F−1
A,kk′

∑
lm

a2
lmg̃A

l (k′)
(
C̃l

A
)−2

. (16)

We find the covariance between the two sample estimates to be

Cov(P̂ A
k , P̂ B

k′ ) = 1

fsky

∑
h,i,j

F−1
A,kiF

−1
B,ij

×
∑

l

2l + 1

2
g̃A

l (j )g̃B
l (k′)

(
C̃l

AB

C̃l
AC̃l

B

)2

. (17)

We scale by the fractional sky coverage of the survey, f sky, which ap-
proximately accounts for the number of modes that may be probed.
The small survey size also broadens the window functions, which

we account for in the covariance with C′
kk′ = WACkk′WB T

.
The variances for one sample computed with equation (17) in

the full-sky limit match well with the full computation of the Fisher
matrix (equation 12) (see Fig. 9). Although, we find that the full-sky
computation underestimates the variance by a factor of ∼2. This is
not surprising since we have neglected the precise survey geometry.
As a correction, we rescale the estimate to match the variance in
the S7 slice. In Fig. 9, we also show the analytic estimates of the

Figure 9. The covariance between the photometric redshift samples is
plotted. The circle markers show the full computation of the variance of
the S7 slice that accounts for the survey geometry. The solid curves show
the analytic Fisher approximation in the full-sky limit (equation 17). Inset
is the full correlation matrix for the three samples.

covariances between the three redshift slices that we may now use
to perform a joint likelihood analysis.

Using the sample covariances, we jointly estimate the linear
galaxy bias factors of the three photometric redshift slices, S6,
S7 and S8, labelled as bS6, bS7 and bS8 along with �m. All other
�CDM parameters are held fixed and we set σ 8 = 0.8. We com-
pute the likelihood of a model with the full covariance matrix. The
fit is limited to the first nine data points of each sample, giving a
maximum k of kmax = 0.2 h Mpc−1. We exhaustively evaluate the
likelihood over the four-dimensional parameter grid. Views of the
likelihood surface, marginalized over pairs of parameters, are shown
in Fig. 10. The marginalized constraints are listed in Table 4 with
68 per cent confidence intervals.

Figure 10. The joint likelihood surfaces of �m and the bias parameters for
the three photo-z samples (bS6, bS7, bS8). The inner and outer contours indi-
cate the 68 and 95 per cent confidence level. The marginalized likelihoods
of each parameter are listed in Table 4. The fit is limited to the first nine data
points, giving kmax = 0.2 h Mpc−1.
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Table 4. Marginalized
parameter estimates.

�m 0.30 ± 0.06
bS6 1.39 ± 0.08
bS7 1.55 ± 0.08
bS8 1.72 ± 0.10

The joint analysis prefers a slightly higher value of �m, 0.30 ±
0.06, versus the fiducial model with 0.272. Due to the correlations
between parameters, this results in higher values of the galaxy bias
factors than were found with the fiducial model fixed (Table 3).

8 C O N C L U S I O N S

The CFHTLS-Wide fields probe a significant cosmological volume
at redshifts not reached by other galaxy surveys to date. We use
the projected density field from photometric redshift samples to
constrain the real-space power spectrum and derive constraints on
the matter density and linear galaxy bias factors. These results are
made possible by precise knowledge of the redshift distributions
provided by preliminary results from the VIPERS.

The primary advantage of computing the power spectrum directly
from the angular distribution, instead of using conventional spher-
ical harmonics Cl , is that we may construct window functions in
Fourier space. By optimizing this, we achieve sharper constraints
on the power spectrum than when we are limited to � bands. This
approach comes with the cost that we must adopt a fiducial power
spectrum. We showed that using the wrong fiducial power spectrum,
although leading to suboptimal weights, does not significantly bias
the estimate. This is true even on small scales, and we can ef-
fectively use this method to deconvolve small and large scales in
Limber’s equation. Residual systematic error on the derived power
spectrum is at the 1 per cent level, well below the sensitivity of the
measurement.

The deprojection does strongly depend on the assumed redshift
distribution of the galaxy sample as well as the cosmology used to
compute the redshift–distance relation. The cosmology dependence
of the measurement makes the interpretation difficult, but to a first
approximation, only the amplitude is affected; the shape of the
power spectrum is recovered correctly. Thus, a converging iterative
procedure can be implemented by updating the fiducial model and
repeating the analysis.

There is a degeneracy between a shift in the assumed redshift
distribution and the cosmological model. This is unavoidable when
studying a field in projection. However, the constraints on the red-
shift distribution can always be improved with further observation.
In our analysis, from the sampling biases present in the VIPERS
spectroscopy, we estimate the uncertainty in the mean redshift to be
at the 1 per cent level. Thus, we do not expect a strong systematic
error in the derived galaxy bias parameters. We do note that the
observed trend of low χ2 values for the best-fitting models in the
higher redshift samples can arise if the covariance is overestimated.
This could be a weak hint that the true mean redshift is lower than
what we assume or that a modification is needed in the fiducial
cosmology.

Recently, the galaxy bias was measured from the CFHTLS-Wide
fields in the context of the halo model by Coupon et al. (2011).
Our final two photometric redshift bins, S7 and S8, correspond to
samples constructed by Coupon et al., so we are able to compare
the resulting bias values. Coupon et al. constructed volume-limited
samples using luminosity cuts, resulting in a selection of brighter

galaxies; thus, we may expect their bias values to be larger. The
halo model constraints of Coupon et al. (2011) give for S7 bg =
1.44 ± 0.01 and for S8 bg = 1.79 ± 0.03. These values have been
scaled by 1.03 to transform from a cosmology with �m = 0.25 to
0.272 which is assumed here. Our value of bg for the S7 sample
is higher, while for the S8 sample it is lower, although both are
in agreement with Coupon et al. within the 2σ confidence limit.
The measurements are based on different physical scales (Coupon
et al. restrict the correlation function to angular scales <1.◦5) and
different model assumptions have been used. Thus, it is reasonable
to consider the measurements as independent estimates.

Our results provide a preliminary look at the large-scale structure
field probed by the VIPERS colour selection and demonstrate the
strengths of the VIPERS sample for clustering studies at z > 0.5.
We anticipate promising results with the full VIPERS spectroscopic
sample.
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A P P E N D I X A : QUA D R AT I C E S T I M ATO R

In Section 4, we reasoned that we would apply the Newton–Raphson
root-finding algorithm (equation 6) to locate the peak of the like-
lihood function (equation 4). We now continue and evaluate the
derivatives of the likelihood function, ∂ ln L

∂λi
and ∂2 ln L

∂λi∂λj
. We assume

that the covariance of the data depends linearly on the parameters
Cij = ∑

kPk,ijλk + Nij.
The first derivative term is

∂ ln L

∂λi

= ∂ ln det C

∂λi

+ xT ∂C−1

∂λi

x (A1)

= Tr

(
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∂λi
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− xTC−1 ∂C

∂λi

C−1x. (A2)

Two identities have been used: ln (det C) = Tr (ln C) and ∂C−1

∂λ
=

−C−1 ∂C
∂λ

C−1. The second derivative, or curvature, is

∂2 ln L

∂λi∂λj

= −Tr

(
C−1 ∂C

∂λi

C−1 ∂C

∂λj

)
+ 2xTC−1 ∂C

∂λi

C−1 ∂C

∂λj

C−1x.

(A3)

We neglect the second derivative terms. To simplify, we replace the
curvature by its average over an ensemble of realizations of the data.
This is known as the Fisher matrix:

Fij ≡ 1
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〈
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= 1
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. (A4)

Inserting these expressions into equation (6), we find that one
iteration step in the Newton–Raphson algorithm is given by

λ̂i = λ
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)−1
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(A7)

The terms on the right are computed with the parameter set λ(0). We
may simplify further by rewriting the trace term with

C−1 ∂C

∂λi

= C−1 ∂C

∂λi

C−1C (A8)
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= 2
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where we use the linear dependence of C on the parameters. Sub-
stituting into (A7), the product of the Fisher matrix with its inverse
leads to a cancellation of the λ(0) terms. We are left with the final
estimator in quadratic form:
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