81 research outputs found

    Valoración mecanotérmica de una resina biodegradable como agente de acoplamiento de materiales compuestos celulósicos/polímero hidrofóbico

    Get PDF
    En la búsqueda de plásticos reforzados con fibras que sean más amigables con el medio ambiente, aquí se presenta el primer estudio que evalúa la posibilidad de utilizar la brea natural de pino (en forma pura o maleinizada) como agente de acoplamiento (biodegradable). Polipropileno (matriz) y fibra de agave (Agave tequilana) de desecho a diferentes concentraciones (agente de refuerzo), fueron acoplados con cada uno de los agentes utilizados; su efecto en las propiedades mecánicas se comparó con el de un agente comercial de polipropileno modificado (Epolene E-43). Igualmente se prepararon, materiales compuestos sin agente de acoplamiento como referencia genérica. El desempeño mecanodinámico y mecanoestático de los materiales muestra claramente el incremento de propiedades mecánicas con los 3 agentes utilizados. La brea maleinizada mostró similitud o ligera superioridad sobre el agente comercial en el efecto logrado. La afectación en cristalinidad por la presencia de la fibra y el agente de acoplamiento correspondiente, fue evaluada mediante calorimetría diferencial de barrido. La absorción de agua como función del tiempo, permitió medir de forma indirecta el cambio logrado en la superficie de los materiales, y un análisis de FTIR, la valoración de la interacción fibra-polímero obtenida con el agente de acoplamiento. Tal interacción lograda con los agentes de acoplamiento, pudo ser además apreciada utilizando microscopía electrónica de barrido. Los resultados alcanzados marcan el camino para poder usar resinas naturales biodegradables como agentes de acoplamiento en el área de plásticos reforzados con fibras celulósicas. AbstractIn the search of useful environmentally friendly fiber reinforced plastics, this is the first study that evaluates the capability to use natural pine rosin (in pure or maleated glycerol ester form) as a biodegradable coupling agent. Polypropylene as polymer matrix and discarded agave fiber (Agave tequilana) as reinforcing agent at different concentrations, were coupled with each one of the two rosins above mentioned; a commercial maleated polypropylene (Epolene, E-43) agent was used to compare their effect. As generic reference, composites without coupling agent were also tested. Mechanodynamic and mechanostatic tests clearly show an increment in mechanical properties of the composites, using any of the 3 coupling agents. The results obtained with maleated rosin were similar or slightly better than the ones obtained with the commercial agent for composites with high fiber content. Fiber content and coupling agent effect on composites crystallinity, was evaluated by differential scanning calorimetry. In addition, water absorption as a function of time was followed to evaluate the effect of surface modification, and FTIR analysis allowed the observation of the fiber-polymer matrix interaction that was promoted with the coupling agents. The effect of such interaction obtained with the different coupling agents, was observed by scanning electron microscopy. The results show the feasibility to use the natural pine rosin in pure or modified form as biodegradable coupling agents

    Role of zinc and α2macroglobulin on thymic endocrine activity and on peripheral immune efficiency (natural killer activity and interleukin 2) in cervical carcinoma

    Get PDF
    Decreased natural killer (NK) activity as well as interleukin 2 (IL-2) are risk factors for the progression of cervical carcinoma. NK activity and IL-2 may be thymus controlled. Plasma levels of active thymulin, a zinc-dependent thymic hormone (ZnFTS), are reduced in cancer because of the low peripheral zinc bioavailability. Zinc and thymulin are relevant for normal immune functions. α2-Macroglobulin is an inhibitor of matrix metalloproteases (MMPs) against invasive tumour proliferation. Because α2-macroglobulin has a binding affinity (Kd) for zinc that is higher than does thymulin, it may play a key role in immune efficiency in cancer. Plasma samples of 22 patients (age range 35–60 years) with locally advanced squamous cervical carcinoma and with FIGO stage Ib2–IIb were examined. They showed reduced active thymulin, decreased NK activity and IL-2 production, increased soluble IL-2 receptor (sIL-2R) and augmented α2-macroglobulin in the circulation, whereas plasma zinc levels were within the normal range for age. Significant positive correlations were found between zinc or active thymulin and α2-macroglobulin (r = 0.75, P< 0.01, r = 0.78, P< 0.01, respectively) in cancer patients. In vitro zinc increases IL-2 production from peripheral blood mononuclear cells (PBMCs) of cancer patients. These data suggest that an increase in α2-macroglobulin, which competes with thymulin for zinc binding, may be involved in causing a thymulin deficit with a consequent decrease of IL-2 and NK cytotoxicity. Thus, physiological zinc treatment in cervical carcinoma maybe restores impaired central and peripheral immune efficiency. © 1999 Cancer Research Campaig

    Horizon 2020 EuPRAXIA design study

    Get PDF

    Horizon 2020 EuPRAXIA design study

    Get PDF
    The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020

    EuPRAXIA - A compact, cost-efficient particle and radiation source

    Get PDF
    Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") aims to overcome the first three of these hurdles by developing a conceptual design for a first international user facility based on plasma acceleration. In this paper we report on the main features, simulation studies and potential applications of this future research infrastructure

    EuPRAXIA - A Compact, Cost-Efficient Particle and Radiation Source

    Get PDF
    Plasma accelerators present one of the most suitable candidates for the development of more compact particle acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality, control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA (“European Plasma Research Accelerator with eXcellence In Applications”) aims to overcome the first three of these hurdles by developing a conceptual design for a first international user facility based on plasma acceleration. In this paper we report on the main features, simulation studies and potential applications of this future research infrastructure

    Curing kinetics and thermo-mechanical properties modelling of a general purpose unsaturated polyester resin (UPR)

    No full text
    Using a 3 mm thick mold trying to reproduce common industrial situations, a general purpose UPR was cured with styrene, methyl ethyl ketone peroxide (MEKP) and cobalt naphthenate. Modelling of the curing reaction (using a 2 k with 5 central points design), tensile and impact strength and glass transition temperature was accomplished. To obtain close fitting, parameters interaction was considered for modelling

    Curing kinetics and thermo-mechanical properties modelling of a general purpose unsaturated polyester resin (UPR)

    No full text
    Using a 3 mm thick mold trying to reproduce common industrial situations, a general purpose UPR was cured with styrene, methyl ethyl ketone peroxide (MEKP) and cobalt naphthenate. Modelling of the curing reaction (using a 2 k with 5 central points design), tensile and impact strength and glass transition temperature was accomplished. To obtain close fitting, parameters interaction was considered for modelling

    Expression and crystallization of a soluble and functional form of an Fc receptor related to class I histocompatibility molecules.

    Get PDF
    Maternal transport of immunoglobulin to the newborn mammal is important for immune defense during the first weeks of independent life. Receptors for the Fc portion of IgG mediate the transfer of immunoglobulin from milk to the bloodstream of newborn mice and rats, by passage through intestinal epithelial cells. Neonatal Fc receptors (FcRn) isolated from intestinal epithelial cells of suckling rats bear a striking resemblance to class I histocompatibility molecules. The heavy chain of FcRn has sequence similarity in three extracellular domains to the corresponding domains of class I molecules, and the light chain of both types of molecules is beta 2-microglobulin. To facilitate biochemical characterization and crystallization of FcRn, we have expressed a secreted form, as well as two different lipid-linked forms solubilizable by phospholipase treatment. The lipid-linked forms are heterodimers consisting of beta 2-microglobulin and the extracellular portion of the heavy chain and are anchored to the membrane by a phosphatidylinositol linkage attached to either the heavy chain or beta 2-microglobulin. Cells expressing either lipid-linked form bind rat Fc, reproducing the known physiological pH dependence of binding. Secreted FcRn has been purified in yields up to 40 mg/liter from cell supernatants. Circular dichroism spectra of soluble FcRn appear similar to spectra of class I MHC molecules, suggesting that the similarities in primary sequence extend also to a similarity in secondary structure. Soluble FcRn crystallizes in a form amenable to a structure determination by x-ray diffraction methods, which will ultimately allow a detailed comparison of the two types of molecules
    corecore