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Abstract. The Horizon 2020 Project EuPRAXIA (“European Plasma Research Accelerator 

with eXcellence In Applications”) is preparing a conceptual design report of a highly compact 

and cost-effective European facility with multi-GeV electron beams using plasma as the 

acceleration medium. The accelerator facility will be based on a laser and/or a beam driven 

plasma acceleration approach and will be used for photon science, high-energy physics (HEP) 
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detector tests, and other applications such as compact X-ray sources for medical imaging or 

material processing. EuPRAXIA started in November 2015 and will deliver the design report 

in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020. 

1.  Introduction  

The EuPRAXIA collaboration is the first plasma accelerator collaboration on this scale bringing 

together 16 European partner laboratories and additional 22 associated partners from the EU, Israel, 

China, Japan, Russia and the USA [1]. EuPRAXIA is structured into 14 working packages each 

headed by two work package leaders from different institutions. Eight work packages receive EU 

funding and their topics include: plasma and laser simulations (WP2), plasma accelerator structures 

(WP3), laser design (WP4), conventional beam physics (WP5), FEL radiation (WP6), and a table-top 

test beam for HEP and other applications (WP7). Two further EU work packages work on the 

management of the collaboration (WP1) and the outreach to the public (WP8). In-kind work packages 

(WP9 - WP14) include additional approaches: beam driven plasma acceleration PWFA (WP9), hybrid 

acceleration schemes (WP14), alternative radiation generation (WP13) and alternative laser sources 

such as fiber lasers (WP10). WP11 and WP12 connect to prototyping on plasma-based FEL’s and 

facility access for experiments until 2019. Industry partners Amplitude Technologies, Thales and 

TRUMPF Scientific take part in the scientific advisory board and contribute their experience towards a 

successful completion of the design report. 

2.  Plasma acceleration 

Scientists, medical doctors and engineers have used radio-frequency (RF) based particle accelerator 

beams for ninety years to probe nature, to produce new particles, to generate light of exquisite quality 

or to irradiate tumors. The accelerators are of outstanding quality, but have grown in size and cost due 

to the materials used for construction, which can only sustain accelerating fields of around 100 MV/m 

before electrical breakdown occurs. Plasma accelerators are not subject to these electrical breakdown 

limits and the accelerating field reaches 100 GV/m, three orders of magnitude larger than in an RF 

accelerator. As a consequence, the size of plasma accelerators can potentially be quite small, reducing 

kilometer scale machines to the meter scale. A new generation of cost-efficient and compact 

accelerators could open completely new usages of particle accelerators, for example in hospitals and 

universities.  This requires suitable stability and repetition rates. 

The great potential of plasma waves for particle acceleration was first recognized by Veksler [2] and 

Tajima and Dawson [3]. The longitudinal plasma waves can be excited by both electron beams 

(plasma wakefield acceleration, PWFA) or intense laser pulses (laser wakefield acceleration, LWFA) 

and are well suited for accelerating charged particles to relativistic energies [4]. Electron beams that 

are accelerated inside a plasma accelerator structure can originate from the background plasma within 

the plasma accelerator structure itself (“internal injection”) or from an accelerator that is situated in 

front of the plasma accelerator structure (“external injection”). Within the last two decades, the beam 

quality of LWFA accelerators has significantly improved [5-13] and the current peak energy lies at 4.2 

GeV [14]. Using these beams, various types of X-ray radiation such as betatron, synchrotron, and 

undulator radiation down to the water-window wavelengths were produced [15-21]. While several tens 

of laboratories use laser systems to accelerate electrons, few laboratories have the electron beam 

needed for beam-driven plasma acceleration [22-28]. FACET at SLAC achieved energy doubling 

within a single electron beam in 2007 [24] and energy was transferred successfully from a drive beam 

to a witness bunch in 2014 [25]. 

In the EuPRAXIA study, both laser driven and beam driven approaches as well as combined plasma 

acceleration schemes - using LWFA-produced beams as drivers of PWFA stages [29, 30] - are taken 

into consideration. The final EuPRAXIA design report in 2019 will include various configurations of a 

possible EuPRAXIA facility. Depending on available budget and the targeted science case, one of 

these options, or a combination of options, might be the best choice. The design report will compare 

size, cost, and performance on a common basis. The first iteration of the design goals were defined in 
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October 2016 [31] and from these, the initial goal parameters for the 5 GeV electron beam at the 

entrance of the undulator are shown in Table 1. The agreed possible configurations are: 

Configuration 1: LWFA with internal injection;  

Configuration 2: LWFA with external injection from an RF accelerator; 

Configuration 3: LWFA with external injection from a laser plasma injector; 

Configuration 4: PWFA with an RF electron beam; and  

Configuration 5: PWFA with LWFA produced electron beam (hybrid schemes). 

In addition to the 5 GeV electron beam, the facility aims to provide a medical imaging X-ray source 

as well as FEL radiation ultimately concentrating in the range between 1 nm and 0.1 nm.  TW laser 

pulses synchronized to the electron and X-ray radiation will be available in the user areas. Parameter 

tables for medical imaging and a table-top test beam for HEP and other applications are currently 

being finalized.  

3.  Laser and electron beam drivers 

The laser used in the LWFA cases is being studied in work package 4 (WP4) with colleagues from 

Thales and Amplitude industry. WP4 reviewed current laser systems in 2016 [32] and proposed 

preliminary specifications of the EuPRAXIA laser, the so-called “100 cube” laser challenge (an energy 

of 100 Joule, a pulse length of 100 fs (FWHM), and a repetition rate of 100 Hz, with a contrast of 10
10

 

at 10 ps). The present work towards this challenging goal disfavors a complete Ti:Sa laser system and 

is considering a diode-pumped solid-state laser pumping scheme. A second laser system, used for the 

plasma injector [33], will operate at lower energy and shorter pulse length. 

Design work on the drive beam for the PWFA case is being performed in WP5. One option under 

discussion is that both configuration 2 (LWFA) and 4 (PWFA) use at low energy the same S-band 

injector and RF linac [34]. The simulated transverse phase space of a possible electron drive beam for 

a PWFA application is shown in Figure 1. This electron beam has an energy of 548 MeV, a peak beam 

current of 1 kA, transverse normalized emittances of 1 μrad m and an energy spread of below 0.07%. 

After acceleration through S-band and X-band structures, the beam is focused by both conventional, 

electro-magnets, and permanent quadrupole magnets before entering the plasma. 

 

 

           Table 1. Target values for the 5 GeV electron beam parameters at the entrance  

                            of the undulators [31]. 

Quantity  Symbol Value 

Particle type e Electrons 

Energy E 5 GeV 

Charge Q 30 pC 

Bunch length (FWHM) τ 10 fs 

Peak current I 3 kA 

Repetition rate f 10 Hz 

Number of bunches N 1 

Total energy spread (RMS) σE/E 1% 

Slice energy spread (RMS) σE,S/E 0.1% 

Trans. Norm. emittance εN,x , εN,y  1 μrad m 

Alpha function αx, αy 0 

Beta function βx, βy 5 m 

Trans. beam size (RMS) σx , σy  22 μm  

Trans. divergence (RMS) σx' , σy'  4.5 μrad 
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Figure 1. Preliminary simulation results for 

the transverse phase space of a possible PWFA 

drive beam (configuration 4) with an energy of 

548 MeV, a peak beam current of 1 kA, 

transverse normalized emittances of 1 μrad m 

and an energy spread of below 0.07%. 

 Figure 2. PIC simulation [36] of a LWFA case 

(configuration 2). The laser pulse (red) 

propagates the plasma (electron density shown 

in blue) from left to right and excites a 

wakefield, which accelerates electrons (shown 

in green) from 0.1 to 1 GeV in 2.5 cm. 

4.  Plasma accelerator structure 

Components necessary for the design of the plasma accelerator structure were reviewed by WP3 in 

2017 [35] in which published experimental results were examined and compared not only in terms of 

achieved electron properties, but also regarding their reliability, stability, or scalability to larger 

electron energy, or repetition rate. The proposed criteria from [35] for selecting a specific plasma 

accelerator structure will be used to decide which types of plasma accelerator will ultimately be 

incorporated into the design report.  

Figure 2 shows a particle-in-cell (PIC) simulation [36, 37] performed with the OSIRIS code [38] in 

which a 1 PW laser traverses a plasma accelerator structure of 1.2 10
17

cm
-3

 electron density. The 

externally injected electron beam (initially: energy E = 100 MeV; relative energy spread σE/E = 0.1%; 

transverse emittance εN,x = 1 μrad m) exits the plasma after 2.5 cm with an energy of 1 GeV (σE/E = 

1.5%; εN,x = 1 μrad m). While emittance is well preserved, the energy spread is significantly increased 

due to the sizable variation of the accelerating field along the injected bunch. Beam loading techniques  

 

 

Figure 3. The preliminary layout of the EUPRAXIA accelerator tunnel is shown [43]. All RF and 

laser infrastructure is being supplied from the level above (not shown). Undulators (yellow) are shown 

in the bottom right corners. (a) Configuration 1: LWFA with internal injection. Two plasma stages are 

included which are supplied with two laser beams (red). (b) Configuration 2: LWFA with external 

injection from an RF accelerator. The RF gun and three S-band structures are shown in front of a 

dogleg which transports the electrons to the two plasma stages. (c) Configuration 4: PWFA. Using the 

same infrastructure of RF gun and S-band structure, the PWFA case uses additional X-band structures 

to accelerate beams to several hundred MeV before using it inside a single plasma accelerator stage. 
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will be used in order to compensate this gradient on the accelerating field and minimize the induced 

energy spread [39-42]. After completion of 1 GeV simulations with conservation of all beam qualities, 

simulations of the 5 GeV beam will continue. 

5.  Layout considerations 

The preliminary layout of the EuPRAXIA accelerator tunnel [43] is shown in Figure 3, excluding user 

areas. Configurations 1, 2, and 4 are visualized. In the current layout, laser and RF infrastructure are 

situated on the level above the accelerator level floor (not shown). If individual configurations were 

built separately, the area for the accelerator tunnel for configuration 1, 2, 3, and 4 are 75 m
2
, 175 m

2
, 

150 m
2
, and 225 m

2
, respectively and configuration 1 to 4 can incorporate configuration 5. Hence the 

footprint of the accelerator tunnel can be up to 5 times smaller than in conventional accelerator 

facilities. EuPRAXIA is a site-independent design study. Potential sites will be included in the design 

report and EuSPARC (Frascati, Italy), SINBAD (Hamburg, Germany), CILEX (Paris, France), CLF 

(Didcot, UK) and ELI (Prague, Czech Republic) have been discussed as potential sites. 

6.  Summary 

The EuPRAXIA collaboration is preparing a conceptual design report for a multi-GeV plasma-based 

accelerator with outstanding beam quality. The facility design aims to include FEL radiation in the soft 

(to hard) X-ray range, a table-top test beam for HEP detectors and industry, and a compact X-ray 

source for medical imaging. Synchronized TW laser beams will be available in the user areas. Both 

laser and electron beams are considered as power sources for the plasma accelerator. EuPRAXIA will 

prepare a proposal to be included on the ESFRI roadmap in 2020 as an innovative European research 

infrastructure. Ultimately, EuPRAXIA will: use the world-wide leading high power lasers from 

European industry, drive laser innovation in the connected companies, provide for the first time usable 

electron beam quality from a plasma accelerator, and serve pilot users from science, engineering, 

medicine and industry.   
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