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Abstract. The Horizon 2020 Project EuPRAXIA (“European Plasma Research Accelerator 
with eXcellence In Applications”) is preparing a conceptual design report of a highly compact 
and cost-effective European facility with multi-GeV electron beams using plasma as the 
acceleration medium. The accelerator facility will be based on a laser and/or a beam driven 
plasma acceleration approach and will be used for photon science, high-energy physics (HEP) 
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detector tests, and other applications such as compact X-ray sources for medical imaging or 
material processing. EuPRAXIA started in November 2015 and will deliver the design report 
in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020. 

1.  Introduction  

The EuPRAXIA collaboration is the first plasma accelerator collaboration on this scale bringing 
together 16 European partner laboratories and additional 22 associated partners from the EU, Israel, 
China, Japan, Russia and the USA [1]. EuPRAXIA is structured into 14 working packages each 
headed by two work package leaders from different institutions. Eight work packages receive EU 
funding and their topics include: plasma and laser simulations (WP2), plasma accelerator structures 
(WP3), laser design (WP4), conventional beam physics (WP5), FEL radiation (WP6), and a table-top 
test beam for HEP and other applications (WP7). Two further EU work packages work on the 
management of the collaboration (WP1) and the outreach to the public (WP8). In-kind work packages 
(WP9 - WP14) include additional approaches: beam driven plasma acceleration PWFA (WP9), hybrid 
acceleration schemes (WP14), alternative radiation generation (WP13) and alternative laser sources 
such as fiber lasers (WP10). WP11 and WP12 connect to prototyping on plasma-based FEL’s and 
facility access for experiments until 2019. Industry partners Amplitude Technologies, Thales and 
TRUMPF Scientific take part in the scientific advisory board and contribute their experience towards a 
successful completion of the design report. 

2.  Plasma acceleration 

Scientists, medical doctors and engineers have used radio-frequency (RF) based particle accelerator 
beams for ninety years to probe nature, to produce new particles, to generate light of exquisite quality 
or to irradiate tumors. The accelerators are of outstanding quality, but have grown in size and cost due 
to the materials used for construction, which can only sustain accelerating fields of around 100 MV/m 
before electrical breakdown occurs. Plasma accelerators are not subject to these electrical breakdown 
limits and the accelerating field reaches 100 GV/m, three orders of magnitude larger than in an RF 
accelerator. As a consequence, the size of plasma accelerators can potentially be quite small, reducing 
kilometer scale machines to the meter scale. A new generation of cost-efficient and compact 
accelerators could open completely new usages of particle accelerators, for example in hospitals and 
universities.  This requires suitable stability and repetition rates. 

The great potential of plasma waves for particle acceleration was first recognized by Veksler [2] and 
Tajima and Dawson [3]. The longitudinal plasma waves can be excited by both electron beams 
(plasma wakefield acceleration, PWFA) or intense laser pulses (laser wakefield acceleration, LWFA) 
and are well suited for accelerating charged particles to relativistic energies [4]. Electron beams that 
are accelerated inside a plasma accelerator structure can originate from the background plasma within 
the plasma accelerator structure itself (“internal injection”) or from an accelerator that is situated in 
front of the plasma accelerator structure (“external injection”). Within the last two decades, the beam 
quality of LWFA accelerators has significantly improved [5-13] and the current peak energy lies at 4.2 
GeV [14]. Using these beams, various types of X-ray radiation such as betatron, synchrotron, and 
undulator radiation down to the water-window wavelengths were produced [15-21]. While several tens 
of laboratories use laser systems to accelerate electrons, few laboratories have the electron beam 
needed for beam-driven plasma acceleration [22-28]. FACET at SLAC achieved energy doubling 
within a single electron beam in 2007 [24] and energy was transferred successfully from a drive beam 
to a witness bunch in 2014 [25]. 

In the EuPRAXIA study, both laser driven and beam driven approaches as well as combined plasma 
acceleration schemes - using LWFA-produced beams as drivers of PWFA stages [29, 30] - are taken 
into consideration. The final EuPRAXIA design report in 2019 will include various configurations of a 
possible EuPRAXIA facility. Depending on available budget and the targeted science case, one of 
these options, or a combination of options, might be the best choice. The design report will compare 
size, cost, and performance on a common basis. The first iteration of the design goals were defined in 
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October 2016 [31] and from these, the initial goal parameters for the 5 GeV electron beam at the 
entrance of the undulator are shown in Table 1. The agreed possible configurations are: 

Configuration 1: LWFA with internal injection;  
Configuration 2: LWFA with external injection from an RF accelerator; 
Configuration 3: LWFA with external injection from a laser plasma injector; 
Configuration 4: PWFA with an RF electron beam; and  
Configuration 5: PWFA with LWFA produced electron beam (hybrid schemes). 

In addition to the 5 GeV electron beam, the facility aims to provide a medical imaging X-ray source 
as well as FEL radiation ultimately concentrating in the range between 1 nm and 0.1 nm.  TW laser 
pulses synchronized to the electron and X-ray radiation will be available in the user areas. Parameter 
tables for medical imaging and a table-top test beam for HEP and other applications are currently 
being finalized.  

3.  Laser and electron beam drivers 

The laser used in the LWFA cases is being studied in work package 4 (WP4) with colleagues from 
Thales and Amplitude industry. WP4 reviewed current laser systems in 2016 [32] and proposed 
preliminary specifications of the EuPRAXIA laser, the so-called “100 cube” laser challenge (an energy 
of 100 Joule, a pulse length of 100 fs (FWHM), and a repetition rate of 100 Hz, with a contrast of 1010 
at 10 ps). The present work towards this challenging goal disfavors a complete Ti:Sa laser system and 
is considering a diode-pumped solid-state laser pumping scheme. A second laser system, used for the 
plasma injector [33], will operate at lower energy and shorter pulse length. 

Design work on the drive beam for the PWFA case is being performed in WP5. One option under 
discussion is that both configuration 2 (LWFA) and 4 (PWFA) use at low energy the same S-band 
injector and RF linac [34]. The simulated transverse phase space of a possible electron drive beam for 
a PWFA application is shown in Figure 1. This electron beam has an energy of 548 MeV, a peak beam 
current of 1 kA, transverse normalized emittances of 1 たrad m and an energy spread of below 0.07%. 
After acceleration through S-band and X-band structures, the beam is focused by both conventional, 
electro-magnets, and permanent quadrupole magnets before entering the plasma. 

 
 

           Table 1. Target values for the 5 GeV electron beam parameters at the entrance  

                            of the undulators [31]. 

Quantity  Symbol Value 

Particle type e Electrons 
Energy E 5 GeV 
Charge Q 30 pC 
Bunch length (FWHM) k 10 fs 
Peak current I 3 kA 
Repetition rate f 10 Hz 
Number of bunches N 1 
Total energy spread (RMS) jE/E 1% 
Slice energy spread (RMS) jE,S/E 0.1% 
Trans. Norm. emittance iN,x , iN,y  1 たrad m 
Alpha function gx, gy 0 
Beta function くx, くy 5 m 
Trans. beam size (RMS) jx , jy  22 たm  
Trans. divergence (RMS) jx' , jy'  4.5 たrad 
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Figure 1. Preliminary simulation results for 
the transverse phase space of a possible PWFA 
drive beam (configuration 4) with an energy of 
548 MeV, a peak beam current of 1 kA, 
transverse normalized emittances of 1 たrad m 
and an energy spread of below 0.07%. 

 Figure 2. PIC simulation [36] of a LWFA case 
(configuration 2). The laser pulse (red) 
propagates the plasma (electron density shown 
in blue) from left to right and excites a 
wakefield, which accelerates electrons (shown 
in green) from 0.1 to 1 GeV in 2.5 cm. 

4.  Plasma accelerator structure 

Components necessary for the design of the plasma accelerator structure were reviewed by WP3 in 
2017 [35] in which published experimental results were examined and compared not only in terms of 
achieved electron properties, but also regarding their reliability, stability, or scalability to larger 
electron energy, or repetition rate. The proposed criteria from [35] for selecting a specific plasma 
accelerator structure will be used to decide which types of plasma accelerator will ultimately be 
incorporated into the design report.  

Figure 2 shows a particle-in-cell (PIC) simulation [36, 37] performed with the OSIRIS code [38] in 
which a 1 PW laser traverses a plasma accelerator structure of 1.2 1017cm-3 electron density. The 
externally injected electron beam (initially: energy E = 100 MeV; relative energy spread jE/E = 0.1%; 
transverse emittance iN,x = 1 たrad m) exits the plasma after 2.5 cm with an energy of 1 GeV (jE/E = 
1.5%; iN,x = 1 たrad m). While emittance is well preserved, the energy spread is significantly increased 
due to the sizable variation of the accelerating field along the injected bunch. Beam loading techniques  

 

 

Figure 3. The preliminary layout of the EUPRAXIA accelerator tunnel is shown [43]. All RF and 
laser infrastructure is being supplied from the level above (not shown). Undulators (yellow) are shown 
in the bottom right corners. (a) Configuration 1: LWFA with internal injection. Two plasma stages are 
included which are supplied with two laser beams (red). (b) Configuration 2: LWFA with external 
injection from an RF accelerator. The RF gun and three S-band structures are shown in front of a 
dogleg which transports the electrons to the two plasma stages. (c) Configuration 4: PWFA. Using the 
same infrastructure of RF gun and S-band structure, the PWFA case uses additional X-band structures 
to accelerate beams to several hundred MeV before using it inside a single plasma accelerator stage. 
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will be used in order to compensate this gradient on the accelerating field and minimize the induced 
energy spread [39-42]. After completion of 1 GeV simulations with conservation of all beam qualities, 
simulations of the 5 GeV beam will continue. 

5.  Layout considerations 

The preliminary layout of the EuPRAXIA accelerator tunnel [43] is shown in Figure 3, excluding user 
areas. Configurations 1, 2, and 4 are visualized. In the current layout, laser and RF infrastructure are 
situated on the level above the accelerator level floor (not shown). If individual configurations were 
built separately, the area for the accelerator tunnel for configuration 1, 2, 3, and 4 are 75 m2, 175 m2, 
150 m2, and 225 m2, respectively and configuration 1 to 4 can incorporate configuration 5. Hence the 
footprint of the accelerator tunnel can be up to 5 times smaller than in conventional accelerator 
facilities. EuPRAXIA is a site-independent design study. Potential sites will be included in the design 
report and EuSPARC (Frascati, Italy), SINBAD (Hamburg, Germany), CILEX (Paris, France), CLF 
(Didcot, UK) and ELI (Prague, Czech Republic) have been discussed as potential sites. 

6.  Summary 

The EuPRAXIA collaboration is preparing a conceptual design report for a multi-GeV plasma-based 
accelerator with outstanding beam quality. The facility design aims to include FEL radiation in the soft 
(to hard) X-ray range, a table-top test beam for HEP detectors and industry, and a compact X-ray 
source for medical imaging. Synchronized TW laser beams will be available in the user areas. Both 
laser and electron beams are considered as power sources for the plasma accelerator. EuPRAXIA will 
prepare a proposal to be included on the ESFRI roadmap in 2020 as an innovative European research 
infrastructure. Ultimately, EuPRAXIA will: use the world-wide leading high power lasers from 
European industry, drive laser innovation in the connected companies, provide for the first time usable 
electron beam quality from a plasma accelerator, and serve pilot users from science, engineering, 
medicine and industry.   
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