73 research outputs found

    Statistical equilibrium of silicon in the solar atmosphere

    Full text link
    The statistical equilibrium of neutral and ionised silicon in the solar photosphere is investigated. Line formation is discussed and the solar silicon abundance determined. High-resolution solar spectra were used to determine solar loggfϵSi\log gf\epsilon_{\rm Si} values by comparison with Si line synthesis based on LTE and NLTE level populations. The results will be used in a forthcoming paper for differential abundance analyses of metal-poor stars. A detailed analysis of silicon line spectra leads to setting up realistic model atoms, which are exposed to interactions in plane-parallel solar atmospheric models. The resulting departure coefficients are entered into a line-by-line analysis of the visible and near-infrared solar silicon spectrum. The statistical equilibrium of \ion{Si}{i} turns out to depend marginally on bound-free interaction processes, both radiative and collisional. Bound-bound interaction processes do not play a significant role either, except for hydrogen collisions, which have to be chosen adequately for fitting the cores of the near-infrared lines. Except for some near-infrared lines, the NLTE influence on the abundances is weak. Taking the deviations from LTE in silicon into account, it is possible to calculate the ionisation equilibrium from neutral and ionised lines. The solar abundance based on the experimental ff-values of Garz corrected for the Becker et al.'s measurement is 7.52±0.057.52 \pm 0.05. Combined with an extended line sample with selected NIST ff-values, the solar abundance is 7.52±0.067.52 \pm 0.06, with a nearly perfect ionisation equilibrium of \Delta\log\epsilon_\odot(\ion{Si}{ii}/\ion{Si}{i}) = -0.01.Comment: 13pages 10 figures. A&A acceptte

    New Analyses of Star-to-Star Abundance Variations Among Bright Giants in the Mildly Metal-Poor Globular Cluster M5

    Get PDF
    We present a chemical composition analysis of 36 giant stars in the mildly metal-poor globular cluster M5 (NGC 5904). The analysis makes use of high resolution data acquired at the Keck I telescope as well as a re-analysis of high resolution spectra acquired for an earlier study at Lick Observatory. We employed two analysis techniques: one, adopting standard spectroscopic constraints, and two, adopting an analysis consistent with the non-LTE precepts as recently described by Thevenin & Idiart. The abundance ratios we derive for magnesium, silicon, calcium, scandium, titanium, vanadium, nickel, barium and europium in M5 show no significant abundance variations and the ratios are comparable to those of halo field stars. However, large variations are seen in the abundances of oxygen, sodium and aluminum, the elements that are sensitive to proton-capture nucleosynthesis. In comparing the abundances of M5 and M4 (NGC 6121), another mildly metal-poor globular cluster, we find that silicon, aluminum, barium and lanthanum are overabundant in M4 with respect to what is seen in M5, confirming and expanding the results of previous studies. In comparing the abundances between these two clusters and others having comparable metallicities, we find that the anti-correlations observed in M5 are similar to those found in more metal-poor clusters, M3, M10 and M13, whereas the behavior in M4 is more like that of the more metal-rich globular cluster M71. We conclude that among stars in Galactic globular clusters, there is no definitive ``single'' value of [el/Fe] at a given [Fe/H] for at least some alpha-capture, odd-Z and slow neutron-capture process elements, in this case, silicon, aluminum, barium and lanthanum.Comment: 31 pages + 16 figures + 11 tables; accepted for publication in Sept.2001 Astronomical Journa

    Search for the standard model Higgs boson decaying to a bbˉb\bar{b} pair in events with no charged leptons and large missing transverse energy using the full CDF data set

    Get PDF
    We report on a search for the standard model Higgs boson produced in association with a vector boson in the full data set of proton-antiproton collisions at s=1.96\sqrt{s} = 1.96 TeV recorded by the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45 fb1^{-1}. We consider events having no identified charged lepton, a transverse energy imbalance, and two or three jets, of which at least one is consistent with originating from the decay of a bb quark. We place 95% credibility level upper limits on the production cross section times standard model branching fraction for several mass hypotheses between 90 and 150GeV/c2150 \mathrm{GeV}/c^2. For a Higgs boson mass of 125GeV/c2125 \mathrm{GeV}/c^2, the observed (expected) limit is 6.7 (3.6) times the standard model prediction.Comment: Accepted by Phys. Rev. Let

    Chemical Composition of the Planet-Harboring Star TrES-1

    Get PDF
    We present a detailed chemical abundance analysis of the parent star of the transiting extrasolar planet TrES-1. Based on high-resolution Keck/HIRES and HET/HRS spectra, we have determined abundances relative to the Sun for 16 elements (Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, and Ba). The resulting average abundance of =0.02±0.06= -0.02\pm0.06 is in good agreement with initial estimates of solar metallicity based on iron. We compare the elemental abundances of TrES-1 with those of the sample of stars with planets, searching for possible chemical abundance anomalies. TrES-1 appears not to be chemically peculiar in any measurable way. We investigate possible signs of selective accretion of refractory elements in TrES-1 and other stars with planets, and find no statistically significant trends of metallicity [XX/H] with condensation temperature TcT_c. We use published abundances and kinematic information for the sample of planet-hosting stars (including TrES-1) and several statistical indicators to provide an updated classification in terms of their likelihood to belong to either the thin disk or the thick disk of the Milky Way Galaxy. TrES-1 is found to be a very likely member of the thin disk population. By comparing α\alpha-element abundances of planet hosts and a large control sample of field stars, we also find that metal-rich ([Fe/H]0.0\gtrsim 0.0) stars with planets appear to be systematically underabundant in [α\alpha/Fe] by 0.1\approx 0.1 dex with respect to comparison field stars. The reason for this signature is unclear, but systematic differences in the analysis procedures adopted by different groups cannot be ruled out.Comment: 52 pages, 15 figures, 5 tables, accepted for publication in the Astronomical Journa

    Search for the standard model Higgs boson decaying to a bb pair in events with one charged lepton and large missing transverse energy using the full CDF data set

    Get PDF
    We present a search for the standard model Higgs boson produced in association with a W boson in sqrt(s) = 1.96 TeV p-pbar collision data collected with the CDF II detector at the Tevatron corresponding to an integrated luminosity of 9.45 fb-1. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the W boson to an electron or muon and a neutrino, we set 95% credibility level upper limits on the WH production cross section times the H->bb branching ratio as a function of Higgs boson mass. At a Higgs boson mass of 125 GeV/c2 we observe (expect) a limit of 4.9 (2.8) times the standard model value.Comment: Submitted to Phys. Rev. Lett (v2 contains clarifications suggested by PRL

    Search for the standard model Higgs boson decaying to a bb pair in events with two oppositely-charged leptons using the full CDF data set

    Get PDF
    We present a search for the standard model Higgs boson produced in association with a Z boson in data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.45/fb. In events consistent with the decay of the Higgs boson to a bottom-quark pair and the Z boson to electron or muon pairs, we set 95% credibility level upper limits on the ZH production cross section times the H -> bb branching ratio as a function of Higgs boson mass. At a Higgs boson mass of 125 GeV/c^2 we observe (expect) a limit of 7.1 (3.9) times the standard model value.Comment: To be submitted to Phys. Rev. Let

    UK imports, third country effect and the global financial crisis: Evidence from the asymmetric ARDL method

    Get PDF
    This paper examines the role of exchange rate volatility in determining real imports. As a robustness check, it further explores the impact of the recent global financial crisis which is a period characterized by heightened exchange rate volatility. More specifically, we investigate the impact of exchange rate volatility on UK real imports from Germany, Japan and the US during the period January 1991–March 2013. In contrast to most studies which focus on bilateral trade, we additionally explore the third country exchange rate volatility effect on UK imports. To capture the nonlinear features which often characterize macroeconomic data, we employ the asymmetric autoregressive distributed lag (ARDL) approach to cointegration. Our results suggest that exchange rate volatility plays an important role and reveal that there is a significant effect of the recent financial crisis on UK imports. This finding is consistent when we test for the third country volatility effect. Finally, we find that there is a significant causal relationship between exchange rate volatility and UK imports both in bilateral tests and in tests which account for the third country exchange rate volatility

    Chemical Compositions of Red Giant Stars in Old Large Magellanic Cloud Globular Clusters

    Full text link
    We have observed ten red giant stars in four old Large Magellanic Cloud globular clusters with the high-resolution spectrograph MIKE on the Magellan Landon Clay 6.5-m telescope. The stars in our sample have up to 20 elemental abundance determinations for the alpha-, iron-peak, and neutron-capture element groups. We have also derived abundances for the light odd-Z elements Na and Al. We find NGC 2005 and NGC 2019 to be more metal-rich than previous estimates from the Ca II triplet, and we derive [Fe/H] values closer to those obtained from the slope of the red giant branch. However, we confirm previous determinations for Hodge 11 and NGC 1898 to within 0.2 dex. The LMC cluster [Mg/Fe] and [Si/Fe] ratios are comparable to the values observed in old Galactic globular cluster stars, as are the abundances [Y/Fe], [Ba/Fe], and [Eu/Fe]. The LMC clusters do not share the low-Y behavior observed in some dwarf spheroidal galaxies. [Ca/Fe], [Ti/Fe], and [V/Fe] in the LMC, however, are significantly lower than what is seen in the Galactic globular cluster system. Neither does the behavior of [Cu/Fe] as a function of [Fe/H] in our LMC clusters match the trend seen in the Galaxy, staying instead at a constant value of ~0.8. Because not all [alpha/Fe] ratios are suppressed, these abundance ratios cannot be attributed solely to the injection of Type Ia SNe material, and instead reflect the differences in star formation history of the LMC vs. the Milky Way. We conclude that many of the abundances in the LMC globular clusters we observed are distinct from those observed in the Milky Way, and these differences are intrinsic to the stars in those systems.Comment: To be published in ApJ, 21 pages, 12 figures. Tables 2 (equivalent widths) and 3 (hyperfine splitting information) included separatel

    The GALAH Survey : Non-LTE departure coefficients for large spectroscopic surveys

    Get PDF
    19 pages, 25 figures, 2 tables, arXiv abstract abridged; accepted for publication in A&AMassive sets of stellar spectroscopic observations are rapidly becoming available and these can be used to determine the chemical composition and evolution of the Galaxy with unprecedented precision. One of the major challenges in this endeavour involves constructing realistic models of stellar spectra with which to reliably determine stellar abundances. At present, large stellar surveys commonly use simplified models that assume that the stellar atmospheres are approximately in local thermodynamic equilibrium (LTE). To test and ultimately relax this assumption, we have performed non-LTE calculations for 1313 different elements (H, Li, C, N, O, Na, Mg, Al, Si, K, Ca, Mn, and Ba), using recent model atoms that have physically-motivated descriptions for the inelastic collisions with neutral hydrogen, across a grid of 37563756 1D MARCS model atmospheres that spans 3000Teff/K80003000\leq T_{\mathrm{eff}}/\mathrm{K}\leq8000, 0.5logg/cms25.5-0.5\leq\log{g/\mathrm{cm\,s^{-2}}}\leq5.5, and 5[Fe/H]1-5\leq\mathrm{[Fe/H]}\leq1. We present the grids of departure coefficients that have been implemented into the GALAH DR3 analysis pipeline in order to complement the extant non-LTE grid for iron. We also present a detailed line-by-line re-analysis of 5012650126 stars from GALAH DR3. We found that relaxing LTE can change the abundances by between 0.7dex-0.7\,\mathrm{dex} and +0.2dex+0.2\,\mathrm{dex} for different lines and stars. Taking departures from LTE into account can reduce the dispersion in the [A/Fe]\mathrm{[A/Fe]} versus [Fe/H]\mathrm{[Fe/H]} plane by up to 0.1dex0.1\,\mathrm{dex}, and it can remove spurious differences between the dwarfs and giants by up to 0.2dex0.2\,\mathrm{dex}. The resulting abundance slopes can thus be qualitatively different in non-LTE, possibly with important implications for the chemical evolution of our Galaxy.Peer reviewe
    corecore