413 research outputs found

    Small angle neutron scattering (SANS) and TEM studies of the internal porosity of three cultured diatom frustules.

    Get PDF
    Diatoms are microscopic algae that produce intricate silica cell walls, called frustules. These structures have well-defined pore classes that characterise the species of diatom. In this way a particular species is able to produce porous silica containing several highly monodisperse pore sizes. The ability to culture relatively large amounts of diatom frustules supports the investigation of pore size distribution in bulk samples with a small angle scattering technique. In this work, we compare SANS scattering curves for three species of diatoms with internal porosity visualised from frustule sections examined under TEM. We comment on the relative merits of each approach for determining the internal porosity of diatom frustules.The Royal Swedish Academy of Sciences through its Nobel Institute for Physics, and its Nobel Institute for Chemistry; The Swedish Research Council; Chalmers University of Technology; Goteborg University; International Union of Pure and Applied Physics (IUPAP); International Union of Pure and Applied Biophysics (IUPAB

    The flow of anisotropic nanoparticles in solution and in blood

    Full text link
    The alignment of anisotropic nanoparticles in flow has been used for a range of applications such as the preparation of strong fibres and the assembly of in-plane aligned 1D-nanoobjects that are used for electronic devices, sensors, energy and biological application. Important is also the flow behaviour of nanoparticles that were designed for nanomedical applications such as drug delivery. It is widely observed that non-spherical nanoparticles have longer circulation times and a more favourable biodistribution. To be able to understand this behaviour, researchers have turned to analyzing the flow of non-spherical nanoparticles in the blood stream. In this review, an overview of microfluidic techniques that are used to monitor the alignment of anisotropic nanoparticles in solution will be provided, which includes analysis by small angle X-ray scattering (SAXS) and polarized light microscopy. The flow of these nanoparticles in blood is then discussed as the presence of red blood cells causes margination of some nanoparticles. Using fluorescence microscopy, the extent of margination can be identified, which coincides with the ability of nanoparticles to adhere to the cells grown along the wall. While these studies are mainly carried out in vitro using blood, initial investigations in vivo were able to confirm the unusual flow of anisotropic nanoparticles

    Manipulation of Polyhydroxybutyrate Properties through Blending with Ethyl-Cellulose for a Composite Biomaterial

    Get PDF
    Polyhydroxybutyrate (PHB) is widely used as a biomaterial in medical and tissue-engineering applications, a relatively high crystallinity limits its application. Blending PHB with ethyl-cellulose (EtC) was readily achieved to reduce PHB crystallinity and promote its degradation under physiological conditions without undue influence on biocompatibility. Material strength of composite films remained unchanged at 6.5 ± 0.6 MPa with 40% (w/w) EtC loadings. Phase separation between the two biopolymers was determined with PHB crystallinity decreasing from 63% to 47% for films with the same loading. This reduction in crystallinity supported an increase in the degradation rates of composite films from 0.39 to 0.81% wk−1 for PHB and its composite, respectively. No significant change in morphology and proliferation of olfactory ensheathing cells were observed with the composites despite significant increases in average surface roughness (Ra) of the films from 2.90 to 3.65 μm for PHB and blends with 80% (w/w) EtC, respectively. Copyright © 2011 Rodman T. H. Chan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Smooth deuterated cellulose films for the visualisation of adsorbed bio-macromolecules.

    Full text link
    Novel thin and smooth deuterated cellulose films were synthesised to visualize adsorbed bio-macromolecules using contrast variation neutron reflectivity (NR) measurements. Incorporation of varying degrees of deuteration into cellulose was achieved by growing Gluconacetobacter xylinus in deuterated glycerol as carbon source dissolved in growth media containing D2O. The derivative of deuterated cellulose was prepared by trimethylsilylation(TMS) in ionic liquid(1-butyl-3-methylimidazolium chloride). The TMS derivative was dissolved in toluene for thin film preparation by spin-coating. The resulting film was regenerated into deuterated cellulose by exposure to acidic vapour. A common enzyme, horseradish peroxidase (HRP), was adsorbed from solution onto the deuterated cellulose films and visualized by NR. The scattering length density contrast of the deuterated cellulose enabled accurate visualization and quantification of the adsorbed HRP, which would have been impossible to achieve with non-deuterated cellulose. The procedure described enables preparing deuterated cellulose films that allows differentiation of cellulose and non-deuterated bio-macromolecules using NR

    Yours ever (well, maybe): Studies and signposts in letter writing

    Get PDF
    Electronic mail and other digital communications technologies seemingly threaten to end the era of handwritten and typed letters, now affectionately seen as part of snail mail. In this essay, I analyze a group of popular and scholarly studies about letter writing-including examples of pundits critiquing the use of e-mail, etiquette manuals advising why the handwritten letter still possesses value, historians and literary scholars studying the role of letters in the past and what it tells us about our present attitudes about digital communications technologies, and futurists predicting how we will function as personal archivists maintaining every document including e-mail. These are useful guideposts for archivists, providing both a sense of the present and the past in the role, value and nature of letters and their successors. They also provide insights into how such documents should be studied, expanding our gaze beyond the particular letters, to the tools used to create them and the traditions dictating their form and function. We also can discern a role for archivists, both for contributing to the literature about documents and in using these studies and commentaries, suggesting not a new disciplinary realm but opportunities for new interdisciplinary work. Examining a documentary form makes us more sensitive to both the innovations and traditions as it shifts from the analog to the digital; we can learn not to be caught up in hysteria or nostalgia about one form over another and archivists can learn about what they might expect in their labors to document society and its institutions. At one time, paper was part of an innovative technology, with roles very similar to the Internet and e-mail today. It may be that the shifts are far less revolutionary than is often assumed. Reading such works also suggests, finally, that archivists ought to rethink how they view their own knowledge and how it is constructed and used. © 2010 Springer Science+Business Media B.V

    Functional Annotation and Identification of Candidate Disease Genes by Computational Analysis of Normal Tissue Gene Expression Data

    Get PDF
    Background: High-throughput gene expression data can predict gene function through the ‘‘guilt by association’ ’ principle: coexpressed genes are likely to be functionally associated. Methodology/Principal Findings: We analyzed publicly available expression data on normal human tissues. The analysis is based on the integration of data obtained with two experimental platforms (microarrays and SAGE) and of various measures of dissimilarity between expression profiles. The building blocks of the procedure are the Ranked Coexpression Groups (RCG), small sets of tightly coexpressed genes which are analyzed in terms of functional annotation. Functionally characterized RCGs are selected by means of the majority rule and used to predict new functional annotations. Functionally characterized RCGs are enriched in groups of genes associated to similar phenotypes. We exploit this fact to find new candidate disease genes for many OMIM phenotypes of unknown molecular origin. Conclusions/Significance: We predict new functional annotations for many human genes, showing that the integration of different data sets and coexpression measures significantly improves the scope of the results. Combining gene expression data, functional annotation and known phenotype-gene associations we provide candidate genes for several geneti

    An Irish perspective on Cryptosporidium. Part 1

    Get PDF
    Cryptosporidiosis, a protozoal disease which causes significant morbidity in humans, is one of the chief causes of diarrhoea in neonatal ruminants. Although the parasite poses a significant threat to public health and animal health in Ireland, its epidemiology on the island is only poorly understood. Environmental studies have shown the waterborne parasite to be widespread in some untreated waterbodies around Ireland. The island's hydrogeological situation, combined with high stocking rates of livestock and the absence of filtration from regular water treatment, render it vulnerable to large-scale outbreaks. This review discusses the parasite in the Irish context and underlines the need for a reference facility to provide active surveillance on the island

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Temperature and Resource Availability May Interactively Affect Over-Wintering Success of Juvenile Fish in a Changing Climate

    Get PDF
    The predicted global warming may affect freshwater systems at several organizational levels, from organism to ecosystem. Specifically, in temperate regions, the projected increase of winter temperatures may have important effects on the over-winter biology of a range of organisms and especially for fish and other ectothermic animals. However, temperature effects on organisms may be directed strongly by resource availability. Here, we investigated whether over-winter loss of biomass and lipid content of juvenile roach (Rutilus rutilus) was affected by the physiologically relatively small (2-5°C) changes of winter temperatures predicted by the Intergovernmental Panel on Climate Change (IPCC), under both natural and experimental conditions. This was investigated in combination with the effects of food availability. Finally, we explored the potential for a correlation between lake temperature and resource levels for planktivorous fish, i.e., zooplankton biomass, during five consecutive winters in a south Swedish lake. We show that small increases in temperature (+2°C) affected fish biomass loss in both presence and absence of food, but negatively and positively respectively. Temperature alone explained only a minor part of the variation when food availability was not taken into account. In contrast to other studies, lipid analyses of experimental fish suggest that critical somatic condition rather than critical lipid content determined starvation induced mortality. Our results illustrate the importance of considering not only changes in temperature when predicting organism response to climate change but also food-web interactions, such as resource availability and predation. However, as exemplified by our finding that zooplankton over-winter biomass in the lake was not related to over-winter temperature, this may not be a straightforward task
    corecore