64 research outputs found

    PERANCANGAN VISUAL NOVEL ADAPTASI CERITA RAKYAT "MURTADO MACAN KEMAYORAN"

    Get PDF
    2016. Fatommy Ariadhi. Pengantar Karya Tugas Akhir ini berjudul “Perancangan Visual Novel Adaptasi Cerita Rakyat Murtado Macan Kemayoran”. Adapun permasalahan yang dikaji adalah : (1) Bagaimana merancang visual novel adaptasi cerita rakyat “Murtado Macan Kemayoran” yang menarik agar dikenal dan diminati oleh masyarakat Jakarta maupun luar kota Jakarta? (2) Bagaimanakah merancang media pendukung yang tepat, efektif, dan efisien untuk mengenalkan visual novel adaptasi cerita rakyat “Murtado Macan Kemayoran” kepada masyarakat Jakarta dan luar kota Jakarta? Tujuan dari perancangan ini adalah untuk memberikan sarana alternatif dalam mempelajari cerita rakyat, yaitu melalui permainan Visual Novel. Melalui media baru yang segar dan berbeda, diharapkan masyarakat Indonesia, khususnya anak – anak muda menjadi lebih tertarik dalam mempeajari cerita rakyat yang ada di Indonesia

    Submicron Structures Technology and Research

    Get PDF
    Contains reports on fourteen research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0908)National Science Foundation (Grant ECS82-05701)Semiconductor Research Corporation (Grant 83-01-033)U.S. Department of Energy (Contract DE-ACO2-82-ER-13019)Lawrence Livermore National Laboratory (Contract 2069209)National Aeronautics and Space Administration (Contract NAS5-27591)Defense Advanced Research Projects Agency (Contract N00014-79-C-0908)National Science Foundation (Grant ECS80-17705)National Aeronautics and Space Administration (Contract NGL22-009-638

    Submicron Structures Technology and Research

    Get PDF
    Contains reports on ten research projects.Joint Services Electronics Program (Contract DAAG29-83-K-0003)Joint Services Electronics Program (Contract DAAL03-86-K-0002)National Science Foundation (Grant ECS82-05701)National Science Foundation (Grant ECS85-06565)Lawrence Livermore Laboratory (Subcontract 2069209)National Science Foundation (Grant ECS85-03443)U.S. Air Force - Office of Scientific Research (Grant AFOSR-85-0154)National Aeronautics and Space Administration (Grant NGL22-009-638)National Science Foundation (through KMS Fusion, Inc.)U.S. Navy - Office of Naval Research (Contract N00014-79-C-0908

    Submicron Structures Technology and Research

    Get PDF
    Contains reports on fifteen research projects.Joint Services Electronics Program (Contract DAALO3-86-K-0002)National Science Foundation (Grant ECS 87-09806)Semiconductor Research Corporation (Contract 87-SP-080)National Science Foundation (Grant ECS 85-03443)U.S. Air Force - Office of Scientific Research (Grant AFOSR 85-0376)National Science Foundation (Grant ECS 85-06565)U.S. Air Force - Office of Scientific Research (Grant AFOSR 85-0154)Lawrence Livermore National Laboratory (Subcontract 2069209)National Aeronautics and Space Adminstration (Grant NGL22-009-683)Collaboration with KMS Fusion, Inc

    Uganda Genome Resource Enables Insights into Population History and Genomic Discovery in Africa.

    Get PDF
    Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.Main funding: This work was funded by the Wellcome Trust, The Wellcome Sanger Institute (WT098051), the U.K. Medical Research Council (G0901213-92157, G0801566, and MR/K013491/1), and the Medical Research Council/Uganda Virus Research Institute Uganda Research Unit on AIDS core funding

    A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans

    Get PDF
    As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including hemophilia, neurofibromatosis, and various cancers. Here we present a comprehensive map of 7,380 MEI polymorphisms from the 1000 Genomes Project whole-genome sequencing data of 185 samples in three major populations detected with two detection methods. This catalog enables us to systematically study mutation rates, population segregation, genomic distribution, and functional properties of MEI polymorphisms and to compare MEI to SNP variation from the same individuals. Population allele frequencies of MEI and SNPs are described, broadly, by the same neutral ancestral processes despite vastly different mutation mechanisms and rates, except in coding regions where MEI are virtually absent, presumably due to strong negative selection. A direct comparison of MEI and SNP diversity levels suggests a differential mobile element insertion rate among populations

    Determining value in health technology assessment: Stay the course or tack away?

    Get PDF
    The economic evaluation of new health technologies to assess whether the value of the expected health benefits warrants the proposed additional costs has become an essential step in making novel interventions available to patients. This assessment of value is problematic because there exists no natural means to measure it. One approach is to assume that society wishes to maximize aggregate health, measured in terms of quality-adjusted life-years (QALYs). Commonly, a single 'cost-effectiveness' threshold is used to gauge whether the intervention is sufficiently efficient in doing so. This approach has come under fire for failing to account for societal values that favor treating more severe illness and ensuring equal access to resources, regardless of pre-existing conditions or capacity to benefit. Alternatives involving expansion of the measure of benefit or adjusting the threshold have been proposed and some have advocated tacking away from the cost per QALY entirely to implement therapeutic area-specific efficiency frontiers, multicriteria decision analysis or other approaches that keep the dimensions of benefit distinct and value them separately. In this paper, each of these alternative courses is considered, based on the experiences of the authors, with a view to clarifying their implications

    Computational pan-genomics: Status, promises and challenges

    Get PDF
    Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different Computational methods and paradigms are needed.We will witness the rapid extension of Computational pan-genomics, a new sub-area of research in Computational biology. In this article, we generalize existing definitions and understand a pangenome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a Computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore