80 research outputs found

    Groups 1, 2 and Zn(II) Heterodinuclear Catalysts for Epoxide/CO2 Ring-Opening Copolymerization

    Get PDF
    A series of heterodinuclear complexes are reported where both Zn(II) and a metal from Group 1 or 2 are chelated by a macrocyclic diphenolate-tetra-amine ligand. The complexes are characterized in the solid state, where relevant by single crystal X-ray crystallography and elemental analysis, and in solution, using NMR spectroscopy and mass spectrometry. The complex synthesis is achieved by reaction of the ligand with diethyl zinc to form the monozinc complex, in situ, followed by subsequent coordination of the second metal; this method enables heterodinuclear conversions >90% as determined by NMR spectroscopy. Alternatively, the same heterodinuclear complexes are accessed by reaction between the two homodinuclear complexes at elevated temperatures for extended periods. These findings suggest that most of the heterodinuclear complexes are the thermodynamic reaction products; the only exception is the Na(I)/Zn(II) complex which is unstable with respect to the homodinuclear counterparts. The catalytic activities and selectivity of the stable heterodinuclear complexes are compared, against each other and the relevant homodinuclear analogues, for the ring-opening copolymerization of CO2 and CHO. Nearly all the heterodinuclear complexes are less active than the dizinc analogues, but the Mg(II)/Zn(II) catalyst is more active. The co-ligand influences the product selectivity, with iodide ligands resulting in cyclic carbonate formation and carboxylate ligands giving a high selectivity for polycarbonate

    Breed-Specific Hematological Phenotypes in the Dog: A Natural Resource for the Genetic Dissection of Hematological Parameters in a Mammalian Species

    Get PDF
    Remarkably little has been published on hematological phenotypes of the domestic dog, the most polymorphic species on the planet. Information on the signalment and complete blood cell count of all dogs with normal red and white blood cell parameters judged by existing reference intervals was extracted from a veterinary database. Normal hematological profiles were available for 6046 dogs, 5447 of which also had machine platelet concentrations within the reference interval. Seventy-five pure breeds plus a mixed breed control group were represented by 10 or more dogs. All measured parameters except mean corpuscular hemoglobin concentration (MCHC) varied with age. Concentrations of white blood cells (WBCs), neutrophils, monocytes, lymphocytes, eosinophils and platelets, but not red blood cell parameters, all varied with sex. Neutering status had an impact on hemoglobin concentration, mean corpuscular hemoglobin (MCH), MCHC, and concentrations of WBCs, neutrophils, monocytes, lymphocytes and platelets. Principal component analysis of hematological data revealed 37 pure breeds with distinctive phenotypes. Furthermore, all hematological parameters except MCHC showed significant differences between specific individual breeds and the mixed breed group. Twenty-nine breeds had distinctive phenotypes when assessed in this way, of which 19 had already been identified by principal component analysis. Tentative breed-specific reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis. This study represents the first large-scale analysis of hematological phenotypes in the dog and underlines the important potential of this species in the elucidation of genetic determinants of hematological traits, triangulating phenotype, breed and genetic predisposition

    Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data

    Get PDF
    Background: MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of protein coding genes) are co-transcribed with their host genes and most intergenic miRNAs transcribed from their own RNA polymerase II (Pol II) promoter. However, the length of the primary transcripts and promoter organization is currently unknown. Methodology: We performed Pol II chromatin immunoprecipitation (ChIP)-chip using a custom array surrounding regions of known miRNA genes. To identify the true core transcription start sites of the miRNA genes we developed a new tool (CPPP). We showed that miRNA genes can be transcribed from promoters located several kilobases away and that their promoters share the same general features as those of protein coding genes. Finally, we found evidence that as many as 26% of the intragenic miRNAs may be transcribed from their own unique promoters. Conclusion: miRNA promoters have similar features to those of protein coding genes, but miRNA transcript organization is more complex. © 2009 Corcoran et al

    Quantitative Expression and Co-Localization of Wnt Signalling Related Proteins in Feline Squamous Cell Carcinoma.

    Get PDF
    Feline oral squamous cell carcinoma (FOSCC) is an aggressive neoplasm in cats. Little is known about the possible molecular mechanisms that may be involved in the initiation, maintenance and progression of FOSCC. Wnt signalling is critical in development and disease, including many mammalian cancers. In this study, we have investigated the expression of Wnt signalling related proteins using quantitative immunohistochemical techniques on tissue arrays. We constructed tissue arrays with 58 individual replicate tissue samples. We tested for the expression of four key Wnt/ß-catenin transcription targets, namely Cyclin D1 (CCND1 or CD1), FRA1, c-Myc and MMP7. All antibodies showed cross reactivity in feline tissue except MMP7. Quantitative immunohistochemical analysis of single proteins (expressed as area fraction / amount of tissue for normal vs tumor, mean ± SE) showed that the expression of CD1 (3.9 ± 0.5 vs 12.2 ± 0.9), FRA1 (5.5 ± 0.6 vs 16.8 ± 1.1) and c-Myc (5.4 ± 0.5 vs 12.5 ± 0.9) was increased in FOSCC tissue by 2.3 to 3 fold compared to normal controls (p<0.0001). By using a multilabel, quantitative fluorophore technique we further investigated if the co-localization of these proteins (all transcription factors) with each other and in the nucleus (stained with 4',6-diamidino-2-phenylindole, DAPI) was altered in FOSCC compared to normal tissue. The global intersection coefficients, a measure of the proximity of two fluorophore labeled entities, showed that there was a significant change (p < 0.01) in the co-localization for all permutations (e.g. CD1/FRA1 etc), except for the nuclear localization of CD1. Our results show that putative targets of Wnt signalling transcription are up-regulated in FOSCC with alterations in the co-localization of these proteins and could serve as a useful marker for the disease.This research was funded by the Prostate Cancer Research Centre charity (registered UK charity no. 1156027), Grant Number AA1. A small financial contribution was also made through intra-mural funds from the Royal Veterinary College.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.016110

    Mapping photodissociation and shocks in the vicinity of Sgr A*

    Full text link
    We have obtained maps of the molecular emission within the central five arcminutes (12 pc) of the Galactic center (GC) in selected molecular tracers: SiO(2-1), HNCO(5_{0,5}-4_{0,4}), and the J=1-->0 transition of H^{13}CO+, HN^{13}C, and C^{18}O at an angular resolution of 30" (1.2 pc). The mapped region includes the circumnuclear disk (CND) and the two surrounding giant molecular clouds (GMCs) of the Sgr A complex, known as the 20 and 50 km s^{-1} molecular clouds.Additionally, we simultaneously observed the J=2-1 and 3-2 transitions of SiO toward selected positions to estimate the physical conditions of the molecular gas. The SiO(2-1) and H^{13}CO+(1-0) emission covers the same velocity range and presents a similar distribution. In contrast, HNCO(5-4) emission appears in a narrow velocity range mostly concentrated in the 20 and 50 km s^{-1} GMCs. The HNCO column densities and fractional abundances present the highest contrast, with difference factors of \geq60 and 28, respectively. Their highest values are found toward the cores of the GMCs, whereas the lowest ones are measured at the CND. SiO abundances do not follow this trend, with high values found toward the CND, as well as the GMCs. By comparing our abundances with those of prototypical Galactic sources we conclude that HNCO, similar to SiO, is ejected from grain mantles into gas-phase by nondissociative C-shocks. This results in the high abundances measured toward the CND and the GMCs. However, the strong UV radiation from the Central cluster utterly photodissociates HNCO as we get closer to the center, whereas SiO seems to be more resistant against UV-photons or it is produced more efficiently by the strong shocks in the CND. Finally, we discuss the possible connections between the molecular gas at the CND and the GMCs using the HNCO/SiO, SiO/CS, and HNCO/CS intensity ratios as probes of distance to the Central cluster.Comment: 26 pages plus 2 appendixes with additional figures. 17 figures in total. Accepted for publication in A&

    Navigating Public Microarray Databases

    Get PDF
    With the ever-escalating amount of data being produced by genome-wide microarray studies, it is of increasing importance that these data are captured in public databases so that researchers can use this information to complement and enhance their own studies. Many groups have set up databases of expression data, ranging from large repositories, which are designed to comprehensively capture all published data, through to more specialized databases. The public repositories, such as ArrayExpress at the European Bioinformatics Institute contain complete datasets in raw format in addition to processed data, whilst the specialist databases tend to provide downstream analysis of normalized data from more focused studies and data sources. Here we provide a guide to the use of these public microarray resources

    Identification of Functional Networks of Estrogen- and c-Myc-Responsive Genes and Their Relationship to Response to Tamoxifen Therapy in Breast Cancer

    Get PDF
    BACKGROUND: Estrogen is a pivotal regulator of cell proliferation in the normal breast and breast cancer. Endocrine therapies targeting the estrogen receptor are effective in breast cancer, but their success is limited by intrinsic and acquired resistance. METHODOLOGY/PRINCIPAL FINDINGS: With the goal of gaining mechanistic insights into estrogen action and endocrine resistance, we classified estrogen-regulated genes by function, and determined the relationship between functionally-related genesets and the response to tamoxifen in breast cancer patients. Estrogen-responsive genes were identified by transcript profiling of MCF-7 breast cancer cells. Pathway analysis based on functional annotation of these estrogen-regulated genes identified gene signatures with known or predicted roles in cell cycle control, cell growth (i.e. ribosome biogenesis and protein synthesis), cell death/survival signaling and transcriptional regulation. Since inducible expression of c-Myc in antiestrogen-arrested cells can recapitulate many of the effects of estrogen on molecular endpoints related to cell cycle progression, the estrogen-regulated genes that were also targets of c-Myc were identified using cells inducibly expressing c-Myc. Selected genes classified as estrogen and c-Myc targets displayed similar levels of regulation by estrogen and c-Myc and were not estrogen-regulated in the presence of siMyc. Genes regulated by c-Myc accounted for 50% of all acutely estrogen-regulated genes but comprised 85% (110/129 genes) in the cell growth signature. siRNA-mediated inhibition of c-Myc induction impaired estrogen regulation of ribosome biogenesis and protein synthesis, consistent with the prediction that estrogen regulates cell growth principally via c-Myc. The 'cell cycle', 'cell growth' and 'cell death' gene signatures each identified patients with an attenuated response in a cohort of 246 tamoxifen-treated patients. In multivariate analysis the cell death signature was predictive independent of the cell cycle and cell growth signatures. CONCLUSIONS/SIGNIFICANCE: These functionally-based gene signatures can stratify patients treated with tamoxifen into groups with differing outcome, and potentially identify distinct mechanisms of tamoxifen resistance

    Sushi in the United States, 1945-1970

    Get PDF
    Sushi first achieved widespread popularity in the United States in the mid-1960s. Many accounts of sushi’s US establishment foreground the role of a small number of key actors, yet underplay the role of a complex web of large-scale factors that provided the context in which sushi was able to flourish. This article critically reviews existing literature, arguing that sushi’s US popularity arose from contingent, long-term, and gradual processes. It examines US newspaper accounts of sushi during 1945–1970, which suggest the discursive context for US acceptance of sushi was considerably more propitious than generally acknowledged. Using California as a case study, the analysis also explains conducive social and material factors, and directs attention to the interplay of supply- and demand-side forces in the favorable positioning of this “new” food. The article argues that the US establishment of sushi can be understood as part of broader public acceptance of Japanese cuisine
    corecore