470 research outputs found

    Outcome measurement in functional neurological disorder: a systematic review and recommendations.

    Get PDF
    OBJECTIVES: We aimed to identify existing outcome measures for functional neurological disorder (FND), to inform the development of recommendations and to guide future research on FND outcomes. METHODS: A systematic review was conducted to identify existing FND-specific outcome measures and the most common measurement domains and measures in previous treatment studies. Searches of Embase, MEDLINE and PsycINFO were conducted between January 1965 and June 2019. The findings were discussed during two international meetings of the FND-Core Outcome Measures group. RESULTS: Five FND-specific measures were identified-three clinician-rated and two patient-rated-but their measurement properties have not been rigorously evaluated. No single measure was identified for use across the range of FND symptoms in adults. Across randomised controlled trials (k=40) and observational treatment studies (k=40), outcome measures most often assessed core FND symptom change. Other domains measured commonly were additional physical and psychological symptoms, life impact (ie, quality of life, disability and general functioning) and health economics/cost-utility (eg, healthcare resource use and quality-adjusted life years). CONCLUSIONS: There are few well-validated FND-specific outcome measures. Thus, at present, we recommend that existing outcome measures, known to be reliable, valid and responsive in FND or closely related populations, are used to capture key outcome domains. Increased consistency in outcome measurement will facilitate comparison of treatment effects across FND symptom types and treatment modalities. Future work needs to more rigorously validate outcome measures used in this population

    Genesis and development of an interfluvial peatland in the central Congo Basin since the Late Pleistocene

    Get PDF
    The central Congo Basin contains the largest known peatland complex in the tropics. Here we present a detailed multi-proxy record from a peat core, CEN-17.4, from the centre of a 45 km wide interfluvial peatland (Ekolongouma), the first record of its kind from the central Congo peatlands. We use pollen, charcoal, sedimentological and geochemical data to reconstruct the site's history from the late Pleistocene to the present day. Peat began accumulating at the centre of the peatland ∼19,600 cal BP (∼17,500–20,400 cal BP, 95% confidence interval), and between ∼9500 (9430–9535 cal BP) and 10,500 (10,310–10,660 cal BP) cal BP towards the margins. Pollen data from the peatland centre show that an initial grass- and sedge-dominated vegetation, which burned frequently, was replaced by a Manilkara-type dominated flooded forest at ∼12,640 cal BP, replaced in turn by a more mixed swamp forest at ∼9670 cal BP. Mixed swamp forest vegetation has persisted to the present day, with variations in composition and canopy openness likely caused at least in part by changes in palaeo-precipitation. Stable isotope data (δDn-C29-v&icecorr) indicate a large reduction in precipitation beginning ∼5000 and peaking ∼2000 cal BP, associated with the near-complete mineralization of several metres of previously accumulated peat and with a transition to a drier, more heliophilic swamp forest assemblage, likely with a more open canopy. Although the peatland and associated vegetation recovered from this perturbation, the strong response to this climatic event underlines the ecosystem's sensitivity to changes in precipitation. We find no conclusive evidence for anthropogenic activity in our record; charcoal is abundant only in the Pleistocene part of the record and may reflect natural rather than anthropogenic fires. We conclude that autogenic succession and variation in the amount and seasonality of precipitation have been the most important drivers of ecological change in this peatland since the late Pleistocene

    Early anthropogenic impact on Western Central African rainforests 2,600 y ago

    Get PDF
    A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest–savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the ‘‘rainforest crisis’’ to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. δ¹³C-inferred vegetation changes confirm a prominent and abrupt appearance of C4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. δD values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era

    The Nonstructural Proteins of Nipah Virus Play a Key Role in Pathogenicity in Experimentally Infected Animals

    Get PDF
    Nipah virus (NiV) P gene encodes P protein and three accessory proteins (V, C and W). It has been reported that all four P gene products have IFN antagonist activity when the proteins were transiently expressed. However, the role of those accessory proteins in natural infection with NiV remains unknown. We generated recombinant NiVs lacking V, C or W protein, rNiV(V−), rNiV(C−), and rNiV(W−), respectively, to analyze the functions of these proteins in infected cells and the implications in in vivo pathogenicity. All the recombinants grew well in cell culture, although the maximum titers of rNiV(V−) and rNiV(C−) were lower than the other recombinants. The rNiV(V−), rNiV(C−) and rNiV(W−) suppressed the IFN response as well as the parental rNiV, thereby indicating that the lack of each accessory protein does not significantly affect the inhibition of IFN signaling in infected cells. In experimentally infected golden hamsters, rNiV(V−) and rNiV(C−) but not the rNiV(W−) virus showed a significant reduction in virulence. These results suggest that V and C proteins play key roles in NiV pathogenicity, and the roles are independent of their IFN-antagonist activity. This is the first report that identifies the molecular determinants of NiV in pathogenicity in vivo

    Comparative structural and functional analysis of Bunyavirus and Arenavirus cap-snatching Endonucleases

    Get PDF
    Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5′ end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase

    Population dynamics of an RNA virus and its defective interfering particles in passage cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses can fall prey to their defective interfering (DI) particles. When viruses are cultured by serial passage on susceptible host cells, the presence of virus-like DI particles can cause virus populations to rise and fall, reflecting predator-prey interactions between DI and virus particles. The levels of virus and DI particles in each population passage can be determined experimentally by plaque and yield-reduction assays, respectively.</p> <p>Results</p> <p>To better understand DI and virus particle interactions we measured vesicular stomatitis virus and DI particle production during serial-passage culture on BHK cells. When the multiplicity of infection (MOI, or ratio of infectious virus particles to cells) was fixed, virus yields followed a pattern of progressive decline, with higher MOI driving earlier and faster drops in virus level. These patterns of virus decline were consistent with predictions from a mathematical model based on single-passage behavior of cells co-infected with virus and DI particles. By contrast, the production of virus during fixed-volume passages exhibited irregular fluctuations that could not be described by either the steady-state or regular oscillatory dynamics of the model. However, these irregularities were, to a significant degree, reproduced when measured host-cell levels were incorporated into the model, revealing a high sensitivity of virus and DI particle populations to fluctuations in available cell resources.</p> <p>Conclusions</p> <p>This study shows how the development of mathematical models, when guided by quantitative experiments, can provide new insight into the dynamic behavior of virus populations.</p

    Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.

    Get PDF
    In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E.R. and EP/G037221/1, nanoDTC, to D.M.), the UK Biology and Biotechnological Sciences Research Council (BB/K002627/1 to A.W.R. and BB/K010220/1 to E.R.), a Marie Curie Intra-European Fellowship (PIEF-GA-2013-625034 to C.Y.L), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z) and the CEA and the CNRS (to J.C.F.C.). A.W.R. holds a Wolfson Merit Award from the Royal Society.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/jacs.5b0373

    The N-Terminal Domain of the Arenavirus L Protein Is an RNA Endonuclease Essential in mRNA Transcription

    Get PDF
    Arenaviridae synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a ‘cap-snatching’ mechanism. Here, we report the crystal structure and functional characterization of the N-terminal 196 residues (NL1) of the L protein from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA. The 2.13 Å resolution crystal structure of NL1 reveals a type II endonuclease α/β architecture similar to the N-terminal end of the influenza virus PA protein. Superimposition of both structures, mutagenesis and reverse genetics studies reveal a unique spatial arrangement of key active site residues related to the PD…(D/E)XK type II endonuclease signature sequence. We show that this endonuclease domain is conserved and active across the virus families Arenaviridae, Bunyaviridae and Orthomyxoviridae and propose that the arenavirus NL1 domain is the Arenaviridae cap-snatching endonuclease
    corecore