308 research outputs found
Neonatal infrared thermography images in the hypothermic ruminant model: Anatomical-morphological-physiological aspects and mechanisms for thermoregulation
Hypothermia is one factor associated with mortality in newborn ruminants due to the drastic temperature change upon exposure to the extrauterine environment in the first hours after birth. Ruminants are precocial whose mechanisms for generating heat or preventing heat loss involve genetic characteristics, the degree of neurodevelopment at birth and environmental aspects. These elements combine to form a more efficient mechanism than those found in altricial species. Although the degree of neurodevelopment is an important advantage for these species, their greater mobility helps them to search for the udder and consume colostrum after birth. However, anatomical differences such as the distribution of adipose tissue or the presence of type II muscle fibers could lead to the understanding that these species use their energy resources more efficiently for heat production. The introduction of unconventional ruminant species, such as the water buffalo, has led to rethinking other characteristics like the skin thickness or the coat type that could intervene in the thermoregulation capacity of the newborn. Implementing tools to analyze species-specific characteristics that help prevent a critical decline in temperature is deemed a fundamental strategy for avoiding the adverse effects of a compromised thermoregulatory function. Although thermography is a non-invasive method to assess superficial temperature in several non-human animal species, in newborn ruminants there is limited information about its application, making it necessary to discuss the usefulness of this tool. This review aims to analyze the effects of hypothermia in newborn ruminants, their thermoregulation mechanisms that compensate for this condition, and the application of infrared thermography (IRT) to identify cases with hypothermia
Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency
Cysteine proteases and cystatins havemany functions that remain poorly characterised, particularly in crop
plants. We therefore investigated the responses of these proteins to nitrogen deficiency in wild-type soybeans
and in two independent transgenic soybean lines (OCI-1 and OCI-2) that express the rice cystatin,
oryzacystatin-I (OCI). Plants were grown for four weeks under either a high (5 mM) nitrate (HN) regime
or in the absence of added nitrate (LN) in the absence or presence of symbiotic rhizobial bacteria. Under
the LN regime all lines showed similar classic symptoms of nitrogen deficiency including lower shoot biomass
and leaf chlorophyll. However, the LN-induced decreases in leaf protein and increases in root protein
tended to be smaller in the OCI-1 and OCI-2 lines than in the wild type. When LN-plants were grown with
rhizobia, OCI-1 and OCI-2 roots had significantly more crown nodules than wild-type plants. The growth
nitrogen regime had a significant effect on the abundance of transcripts encoding vacuolar processing
enzymes (VPEs), LN-dependent increases in VPE2 and VPE3 transcripts in all lines. However, the LN-dependent
increases of VPE2 and VPE3 transcripts were significantly lower in the leaves of OCI-1 and OCI-2 plants
than in the wild type. These results show that nitrogen availability regulates the leaf and root cysteine protease,
VPE and cystatin transcript profiles in a manner that is in some cases influenced by ectopic OCI
expression. Moreover, the OCI-dependent inhibition of papain-like cysteine proteases favours increased
nodulation and enhanced tolerance to nitrogen limitation, as shown by the smaller LN-dependent
decreases in leaf protein observed in the OCI-1 and OCI-2 plants relative to the wild type.FP7-PIRSES-GA-2008-230830 (LEGIM)
and PIIF-GA-2011-299347 (Soylife; K.K.).http://www.elsevier.com/locate/phytochem2016-04-30hb201
Operations of and Future Plans for the Pierre Auger Observatory
Technical reports on operations and features of the Pierre Auger Observatory,
including ongoing and planned enhancements and the status of the future
northern hemisphere portion of the Observatory. Contributions to the 31st
International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200
Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory
Data from the Pierre Auger Observatory are analyzed to search for
anisotropies near the direction of the Galactic Centre at EeV energies. The
exposure of the surface array in this part of the sky is already significantly
larger than that of the fore-runner experiments. Our results do not support
previous findings of localized excesses in the AGASA and SUGAR data. We set an
upper bound on a point-like flux of cosmic rays arriving from the Galactic
Centre which excludes several scenarios predicting sources of EeV neutrons from
Sagittarius . Also the events detected simultaneously by the surface and
fluorescence detectors (the `hybrid' data set), which have better pointing
accuracy but are less numerous than those of the surface array alone, do not
show any significant localized excess from this direction.Comment: Matches published versio
Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV
We describe the measurement of the depth of maximum, Xmax, of the
longitudinal development of air showers induced by cosmic rays. Almost four
thousand events above 10^18 eV observed by the fluorescence detector of the
Pierre Auger Observatory in coincidence with at least one surface detector
station are selected for the analysis. The average shower maximum was found to
evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/-
0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured
shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The
interpretation of these results in terms of the cosmic ray mass composition is
briefly discussed.Comment: Accepted for publication by PR
The Pierre Auger Observatory III: Other Astrophysical Observations
Astrophysical observations of ultra-high-energy cosmic rays with the Pierre
Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference,
Beijing, China, August 201
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory
The Pierre Auger Collaboration has reported evidence for anisotropy in the
distribution of arrival directions of the cosmic rays with energies
eV. These show a correlation with the distribution
of nearby extragalactic objects, including an apparent excess around the
direction of Centaurus A. If the particles responsible for these excesses at
are heavy nuclei with charge , the proton component of the
sources should lead to excesses in the same regions at energies . We here
report the lack of anisotropies in these directions at energies above
(for illustrative values of ). If the anisotropies
above are due to nuclei with charge , and under reasonable
assumptions about the acceleration process, these observations imply stringent
constraints on the allowed proton fraction at the lower energies
- âŠ