36 research outputs found

    Some symmetric (71,15,3) designs with an involutory elation

    Get PDF
    Symmetric designs for (71,15,3) with the semi-standard automorphism group G E8 · F21 have been investigated. There were constructed exactly three nonisomorphic designs, two of them with an involutory elation

    E25 · Z3 as an automorphism group of a symmetric (101,25,6) design

    Get PDF
    We prove that there is exactly one possible orbit structure for the action of the group E25 · Z3 as an automorphism group on a symmetric (101,25,6) design

    FREQUENCY OF INJURIES ACCORDING TO THE TIME OF OCCURRENCE RELATED TO THE DEVELOPMENT OF MINING TECHNOLOGY IN THE MIDDLE-BOSNIAN COAL MINES

    Get PDF
    Proučavanje učestalosti povreda je u funkciji preventivnog djelovanja. U tom smislu povrede se mogu pratiti po vremenu nastanka, dijelovima sijela, mjestu pojave, izvorima i uzrocima, Konkretna istraživanja odnose se na utvrđivanje učestalosti povreda po radnim satima u smjeni na otkopirna Srednjebosan-skih rudnika.Studying the frequency of injuries is in function of prevention. In this sense the injuries can be observed according to the time of their occurrence, the parts of body, place of occurrence, sources and causes. The concrete investigations were caried out to establish the frequency of injuries according to working hours in a shift at the stopes of the Middle—Bosnian coal mines

    THE USE OF COMPUTERS IN MINERAL DRESSING

    Get PDF
    U oplemenjivanju mineralnih sirovina računalo najčešće koristimo za potrebe simulacije postojećih odnosno projektiranje novih uređaja i procesa. Za to je neophodno poznavanje teorije procesa i odgovarajućih modela koji određeni proces vjerno opisuju. U radu su klasificirani modelni parametri te procijenjena pouzdanost pojedinih modela. Pobliže su objašnjeni modeli mljevenju i klasiranja. Na primjeru iz prakse prikazana je primjena modela u simulaciji.In mineral dressing the computer is tnostiy used for the simulation of operating, and design of new devices and processes. For that, the knowledge of the theory of the process proper as well as of the appropriate models by which the process is truly assessed is indispensable. In the paper, model parameters are classified and reliability of individual models valorized. Milling and classification models are described in more detail. By a plant example the application of a simulation model is shown

    Anelasticity across seismic to tidal timescales: a self-consistent approach

    Get PDF
    In a pioneering study, Wahr & Bergen developed the widely adopted, pseudo-normal mode framework for predicting the impact of anelastic effects on the Earth's body tides. Lau et al. have recently derived an extended normal mode treatment of the problem (as well as a minor variant of the theory known as the direct solution method) that makes full use of theoretical developments in free oscillation seismology spanning the last quarter century and that avoids a series of assumptions and approximations adopted in the traditional theory for predicting anelastic effects. There are two noteworthy differences between these two theories: (1) the traditional theory only considers perturbations to the eigenmodes of an elastic Earth, whereas the new theory augments this set of modes to include the relaxation modes that arise in anelastic behaviour; and (2) the traditional theory approximates the complex perturbation to the tidal Love number as a scaled version of the complex perturbation to the elastic moduli, whereas the new theory computes the full complex perturbation to each eigenmode. In this study, we highlight the above differences using a series of synthetic calculations, and demonstrate that the traditional theory can introduce significant error in predictions of the complex perturbation to the Love numbers due to anelasticity and the related predictions of tidal lag angles. For the simplified Earth models we adopt, the computed lag angles differ by ∼20 per cent. The assumptions in the traditional theory have important implications for previous studies that use model predictions to correct observables for body tide signals or that analyse observations of body tide deformation to infer mantle anelastic structure. Finally, we also highlight the fundamental difference between apparent attenuation (i.e. attenuation inferred from observations or predicted using the above theories) and intrinsic attenuation (i.e. the material property investigated through experiments), where both are often expressed in terms of lag angles or Q−1. In particular, we demonstrate the potentially significant (factor of two or more) bias introduced in estimates of Q−1 and its frequency dependence in studies that have treated Q−1 determined from tidal phase lags or measured experimentally as being equal. The observed or theoretically predicted lag angle (or apparent Q−1) differs from the intrinsic, material property due to inertia, self-gravity and effects associated with the energy budget. By accounting for these differences we derive, for a special case, an expression that accurately maps apparent attenuation predicted using the extended normal mode formalism of Lau et al. into intrinsic attenuation. The theory allows for more generalized mappings which may be used to robustly connect observations and predictions of tidal lag angles to results from laboratory experiments of mantle materials

    Systematic LREE enrichment of mantle harzburgites: The petrogenesis of San Carlos xenoliths revisited

    Get PDF
    We are grateful to K. Itano for fruitful discussion of the ideas developed in this paper and K. Ozawa for support on the use of his opensystem melting model. The manuscript benefited from constructivecomments provided by Q. Xiong and three anonymous reviewers as well as from the editor X.-H. Li. This work was funded by a Japan Society for the Promotion of Science (JSPS) fellowship.The dichotomy between partial melting and metasomatism is a paradigm of mantle geochemistry since the pioneering work of Frey and Prinz (1978) on the occurrence of LREE-enriched harzburgites. However, the thermo-chemical implications of such two-stage scenarios are often poorly considered, and the latter fail to explain why trace-element enrichment and major-element depletion are often proportional.We here re-envisage the petrogenesis of the famous San Carlos peridotites based on new petrographic observations and detailed modal, major- and trace-element compositions. The lherzolites (and pyroxenites) are characterized by homogeneously fertile mineral chemistry and LREE-depleted patterns consistent with low degrees of partial melting of the lherzolitic protolith. Bulk compositions and mineral zoning suggest that opx-rich pyroxenites formed by pressure-solution creep during melt-present deformation, locally accompanied by magmatic segregations of cpx. The harzburgites are characterized by stronger mineral zoning with low-Mg# and Na-, Al- and Cr-rich cpx rims, and can be discriminated in a low-Jd and high-Jd cpx groups. The high-Jd group is interpreted as the result of local elemental redistribution in the presence of a low-degree hydrous melt, in good agreement with their wide range of LREE enrichment. In contrast, the MREE-to-HREE fractionation and increasing Cr# in spinel of the low-Jd group indicate that they experienced higher degrees of melting. Open-system melting simulations of trace-element fractionation during hydrous flux melting suggests that the high-Jd harzburgites are the result of low fluid influx producing poorly extracted melt, while higher influx led to higher melting degrees and efficient melt extraction in the low-Jd harzburgites; the lherzolites mostly remained below or near solidus during that process. The lithological and chemical heterogeneity of San Carlos mantle is thus compatible with a single-stage evolution, which is also supported by the striking consistency between Fe-Mg exchange and REE thermometric estimates (1057 and 1074 °C on average, respectively), indicating that harzburgites and lherzolites probably followed a similar P-T path and relatively little sub-solidus re-equilibration. These interpretations suggest that the development ofmelt extraction pathways promoted by reactive channeling instability is able to produce complex lithological heterogeneities during hydrous flux melting. This process provides a self-consistent explanation for the systematic enrichment of harzburgites observed in many mantle terranes and xenoliths worldwide. We argue that San Carlos is one of such examples where a ca 1.5-Ga continental lithosphere experienced localized flux melting and deformation during the tectonic reactivation of a Proterozoic subduction zone, providing new constraints on the mantle sources of volcanic activity in the Jemez Lineament.Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Scienc

    Modeling the impact of melt on seismic properties during mountain building

    Get PDF
    Initiation of partial melting in the mid/lower crust causes a decrease in P-wave and S-wave velocities; recent studies imply that the relationship between these velocities and melt is not simple. We have developed a modelling approach to assess the combined impact of various melt and solid phase properties on seismic velocities and anisotropy. The modelling is based on crystallographic preferred orientation (CPO) data measured from migmatite samples, allowing quantification of the variation of seismic velocities with varying melt volumes, shapes, orientations, and matrix anisotropy. The results show non-linear behaviour of seismic properties as a result of the interaction of all of these physical properties, which in turn depend on lithology, stress regime, strain rate, pre-existing rock fabrics, and pressure-temperature conditions. This non-linear behaviour is evident when applied to a suite of samples from a traverse across a migmatitic shear zone in the Seiland Igneous Province, Northern Norway. Critically, changes in solid phase composition and CPO, and melt shape and orientation with respect to the wave propagation direction can result in huge variations in the same seismic property even if the melt fraction remains the same. A comparison with surface wave interpretations from tectonically active regions highlights the issues in current models used to predict melt percentages or partially molten regions. Interpretation of seismic data to infer melt percentages or extent of melting should, therefore, always be underpinned by robust modelling of the underlying geological parameters combined with examination of multiple seismic properties in order to reduce uncertainty of the interpretation

    Electrical conductivity during incipient melting in the oceanic low-velocity zone

    Get PDF
    International audienceThe low-viscosity layer in the upper mantle, the asthenosphere, is a requirement for plate tectonics1. The seismic low velocities and the high electrical conductivities of the asthenosphere are attributed either to subsolidus, water-related defects in olivine minerals2, 3, 4 or to a few volume per cent of partial melt5, 6, 7, 8, but these two interpretations have two shortcomings. First, the amount of water stored in olivine is not expected to be higher than 50 parts per million owing to partitioning with other mantle phases9 (including pargasite amphibole at moderate temperatures10) and partial melting at high temperatures9. Second, elevated melt volume fractions are impeded by the temperatures prevailing in the asthenosphere, which are too low, and by the melt mobility, which is high and can lead to gravitational segregation11, 12. Here we determine the electrical conductivity of carbon-dioxide-rich and water-rich melts, typically produced at the onset of mantle melting. Electrical conductivity increases modestly with moderate amounts of water and carbon dioxide, but it increases drastically once the carbon dioxide content exceeds six weight per cent in the melt. Incipient melts, long-expected to prevail in the asthenosphere10, 13, 14, 15, can therefore produce high electrical conductivities there. Taking into account variable degrees of depletion of the mantle in water and carbon dioxide, and their effect on the petrology of incipient melting, we calculated conductivity profiles across the asthenosphere for various tectonic plate ages. Several electrical discontinuities are predicted and match geophysical observations in a consistent petrological and geochemical framework. In moderately aged plates (more than five million years old), incipient melts probably trigger both the seismic low velocities and the high electrical conductivities in the upper part of the asthenosphere, whereas in young plates4, where seamount volcanism occurs6, a higher degree of melting is expected
    corecore