SOME SYMMETRIC (71, 15, 3) DESIGNS WITH AN INVOLUTORY ELATION

Mirjana Garapić

University of Zagreb, Croatia

ABSTRACT. Symmetric designs for (71, 15, 3) with the semi-standard automorphism group $G \cong E_8 \cdot F_{21}$ have been investigated. There were constructed exactly three nonisomorphic designs, two of them with an involutory elation.

1. INTRODUCTION

In [1], we have proved that exactly six nonisomorphic triplanes for (71, 15, 3) exists having the automorphism group $G \cong E_8 \cdot F_{21}$ acting nonsemistandardly. The group G is a faithful extension of an elementary abelian group E_8 of order 8 by a Frobenius group of order 21. Here we shall confine our attention to the semi-standard automorphism group situation. We use the method from [2] and this group G to "construct" the triplanes for (71, 15, 3) under this assumption. We have found that there exist triplanes with these parameters nonisomorphic to the triplanes in [1], admitting an elation of order 2 and also another class of triplanes without that property. Hence, the property of admitting an involutory elation yields a new approach to the construction and the classification of symmetric design for (71, 15, 3).

2. NOTATION AND BASIC DEFINITIONS

Suppose G is an authomorphism group of a symmetric $D = (v, k, \lambda)$ design. Actually, G has orbits of lengths a_1, a_2, \ldots, a_c on points and orbits of lengths b_1, b_2, \ldots, b_c on blocks of D respectively.

Key words and phrases. symmetric design, triplane, automorphism group, fixed point (block).

²⁰⁰⁰ Mathematics Subject Classification. 05B05.

MIRJANA GARAPIĆ

DEFINITION 1. An automorphism group G is said to be semi-standard if, after possibly renumbering the orbits we have $a_i \leq a_j$ and $b_i \leq b_j$ for $i \leq j$ and if $a_i = b_i$ for all i = 1, 2, ..., c.

We also say that a group G acts semistandardly. In the oposite case, we say G acts non-semistandardly.

DEFINITION 2. Let $\alpha \neq 1$ be an automorphism on a symmetric $2-(v, k, \lambda)$ design. We say that α is an elation if there exists an α -fixed block b containing exactly k α -fixed points and if α fixes a set of k blocks having exactly one α fixed point of b in common.

Notation and other definitions can be found in [1].

3. Results of the investigation in the semi-standard group situation

Now, suppose the group $G \cong E_8 \cdot F_{21}$ is an automorphism group of a symmetric 2 - (71, 15, 3) design. This group G is generated by the set of three elements of order two, three and seven respectively. (For details of the action of generators see [1].) It was proved in [1] that an involution had seven or fifteen points, an automorphism of order three fixed five points and an automorphism of order seven fixed exactly one point. In the case where G acts semistandardly it was proved that G had three orbits on the points(blocks) having lengths 1, 14, 56. Here we have constructed symmetric designs D_5 , D_6 and D_7 , all of them nonisomorphic. (See the method in [2].) Without loss of generality the constructed designs have the following block orbit representatives:

The first block orbit representative of D_5 , D_6 and D_7 :

 $1_1 \ 2_1 \ 2_2 \ 2_3 \ 2_4 \ 2_5 \ 2_6 \ 2_7 \ 2_8 \ 2_9 \ 2_{10} \ 2_{11} \ 2_{12} \ 2_{13} \ 2_{14}$

The second block orbit representative of D_5 , D_6 and D_7 :

 $1_1 2_1 2_2 3_8 3_9 3_{11} 3_{18} 3_{19} 3_{21} 3_{25} 3_{33} 3_{38} 3_{45} 3_{51} 3_{53}$

The third block orbit representatives for

Here the intersection numbers of all triples of blocks for D_5, D_6 and D_7 have been calculated but the constructed designs D_6 and D_7 do not differ in this characteristic. Hence we have used the method of spreads (see [1]) to prove the nonisomorphism of designs D_5 , D_6 and D_7 . We proved that all of them are mutually nonisomorphic as well as nonisomorphic to the designs constructed in [1]. Compare the results of investigation in the Table 1 with the results in [1].

 Table 1:
 D_i b_* (r_1, r_2, r_3) (s_1, s_2, s_3)
 D_5 1
 (35, 63, 69) (56, 52, 100)

 D_6 1
 (35, 51, 63) (56, 160, 86)

 D_7 1
 (35, 51, 63) (56, 160, 70)

Here, b_* is the number of special blocks of a design D_i , r_i means the number of blocks of a reduced structure I_b/R where b is an element of the *i*-th orbit of blocks of D_i and s_i means the number of spreads with respect to the block b in the *i*-th orbit of blocks of D_i .

It was interesting to investigate the acting of involution $f = \rho^*$ fixing fifteen points of the constructed designs D_5 , D_6 and D_7 . (See the permutation ρ^* in [1]). Here we have proved that f was not an automorphism on D_5 but f acted on D_6 and D_7 as an elation.

Now the first orbit of blocks of D_6 and D_7 contains just one *G*-fixed block containing exactly fifteen *f*-fixed points. The second orbit consists of fourteen blocks which all have the point 1_1 in common. We find that the blocks incident with the point 1_1 are all the *f*-fixed blocks. Here a pair of points of these blocks is either fixed or interchanged by *f*. The third orbit of blocks of D_6 and D_7 contains further fifty-six blocks of these designs. By verification it turns out that this permutation *f* breaks up this orbit of blocks in twenty-eight pairs of blocks interchanged by *f* for both D_6 and D_7 . As one can see, the permutation *f* is an elation on the symmetric designs D_6 and D_7 respectively. This automorphism *f* is different from, and commutes with the automorphisms provided by the group *G* and it was found under this assumption. We have seen that the permutation *f* was not an automorphism on D_1 , it acted as an automorphism on the symmetric designs D_2 and D_3 (see in [1]) but it was not an elation on designs D_2 and D_3 .

We have investigated only the symmetric (71, 15, 3) designs with the automorphism group $G \cong E_8 \cdot F_{21}$. We did not check whether it was possible to produce still more symmetric (71, 15, 3) designs with an involutory elation in another case. Thus we have the following result:

THEOREM 3.1. There exist at least two non-isomorphic symmetric (71, 15, 3) designs admitting an involutory elation. Both of them are non-self-dual.

References

- M.Garapić, Triplanes for (71, 15, 3) admitting a solvable group of order 168 acting nonsemistandardly, Glasnik Matematički 29(49)(1994), 17–24.
- Z.Janko, Coset enumeration in groups and constructions of symmetric designs, Combinatories 90(1992), 275–277.

MIRJANA GARAPIĆ

Zavod za matematiku, informatiku i nacrtnu geometriju Rudarsko-geološko-naftni fakultet Pierottijeva 6 10000 Zagreb Croatia

Received: 210.01.1999. Revised: 22.06.2000

214