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S U M M A R Y
In a pioneering study, Wahr & Bergen developed the widely adopted, pseudo-normal mode
framework for predicting the impact of anelastic effects on the Earth’s body tides. Lau et al.
have recently derived an extended normal mode treatment of the problem (as well as a minor
variant of the theory known as the direct solution method) that makes full use of theoretical
developments in free oscillation seismology spanning the last quarter century and that avoids
a series of assumptions and approximations adopted in the traditional theory for predicting
anelastic effects. There are two noteworthy differences between these two theories: (1) the
traditional theory only considers perturbations to the eigenmodes of an elastic Earth, whereas
the new theory augments this set of modes to include the relaxation modes that arise in
anelastic behaviour; and (2) the traditional theory approximates the complex perturbation
to the tidal Love number as a scaled version of the complex perturbation to the elastic
moduli, whereas the new theory computes the full complex perturbation to each eigenmode.
In this study, we highlight the above differences using a series of synthetic calculations, and
demonstrate that the traditional theory can introduce significant error in predictions of the
complex perturbation to the Love numbers due to anelasticity and the related predictions of
tidal lag angles. For the simplified Earth models we adopt, the computed lag angles differ
by ∼20 per cent. The assumptions in the traditional theory have important implications for
previous studies that use model predictions to correct observables for body tide signals or
that analyse observations of body tide deformation to infer mantle anelastic structure. Finally,
we also highlight the fundamental difference between apparent attenuation (i.e. attenuation
inferred from observations or predicted using the above theories) and intrinsic attenuation (i.e.
the material property investigated through experiments), where both are often expressed in
terms of lag angles or Q−1. In particular, we demonstrate the potentially significant (factor
of two or more) bias introduced in estimates of Q−1 and its frequency dependence in studies
that have treated Q−1 determined from tidal phase lags or measured experimentally as being
equal. The observed or theoretically predicted lag angle (or apparent Q−1) differs from the
intrinsic, material property due to inertia, self-gravity and effects associated with the energy
budget. By accounting for these differences we derive, for a special case, an expression that
accurately maps apparent attenuation predicted using the extended normal mode formalism of
Lau et al. into intrinsic attenuation. The theory allows for more generalized mappings which
may be used to robustly connect observations and predictions of tidal lag angles to results
from laboratory experiments of mantle materials.

Key words: Tides and planetary waves; Elasticity and anelasticity; Seismic attenuation;
Theoretical seismology.
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1 I N T RO D U C T I O N

The search for an accurate and complete understanding of the frequency domain response of the Earth to an applied forcing is of fundamental
importance in efforts to model a wide range of dynamical processes, including seismic wave propagation, ocean (loading) and body tides,
polar motion and glacial isostatic adjustment. Dissipation of energy varies with frequency and, from a macroscopic viewpoint, this variability
is largely a reflection of the frequency dependence of the viscosity of Earth’s bulk materials. In this study, we focus on the anelastic (small
strain) portion of Earth’s rheological response from long-period seismic to tidal timescales, and we treat this response as time dependent, but
completely recoverable (i.e. we do not consider the possibility of a purely viscous component to the response).

Several approaches have been used to investigate how dissipation arises across these timescales. For example, experimental stud-
ies recreate relevant stress and temperature conditions in samples across a specified frequency range and focus on grain-scale pro-
cesses (see e.g. Faul & Jackson 2015). These studies indicate that Earth materials exhibit the so-called ‘high-temperature back-
ground’ behaviour, whereby attenuation (which is to be interpreted as synonymous with dissipation) may be characterized by a power-
law frequency dependence. Materials that exhibit such behaviour include metals (e.g. Rivière 2001), ceramics (e.g. MgO, Barnhoorn
et al. 2007) and silicates (e.g. Jackson 1993; Gribb & Cooper 1998). Microphysical models of grain-scale processes predict a grain-
size dependence of dissipation due to elastically and diffusionally accommodated grain-boundary sliding (e.g. Raj & Ashby 1971;
Raj 1975; Morris & Jackson 2009; Lee et al. 2011). These models predict that with decreasing frequency the mildly frequency-
dependent high-temperature background or absorption band behaviour is followed seamlessly by a transition to viscous behaviour. The
frequency and grain-size dependence predicted by these models has been observed experimentally in olivine (Jackson et al. 2002;
Jackson & Faul 2010).

Direct observations of Earth’s response to external forcings have also been used to constrain the frequency dependence of dissipation.
For example, measurements of the Earth’s response to earthquakes, including body waves, surface waves, and normal mode excitation,
have all yielded estimates of the Earth’s attenuation (or Q−1 where Q is the quality factor) structure, though these estimates are generally
characterized by significant uncertainty (Resovsky et al. 2005). In regard to seismic frequencies, models adopted within the literature include
an absorption band in which Q−1 is assumed to be either constant with respect to frequency (Kanamori & Anderson 1977) or characterized
by a power law dependence (Anderson & Minster 1979; Shito et al. 2004; Lekić et al. 2009). Observations of geodynamic processes with
longer periods, such as body tides and the Chandler wobble, have extended existing constraints on dissipation to include timescales of years
and decades (e.g. Anderson & Minster 1979; Ray et al. 2001; Benjamin et al. 2006), although these observations are also characterized by
large uncertainty.

Taken together, existing observational constraints suggest that dissipation increases with the period of the forcing, though the exponent
of the frequency dependence and the frequency of the onset of the absorption band remain poorly known. This is, in part, due to the large
observational uncertainties noted above (Resovsky et al. 2005; Benjamin et al. 2006), but a more fundamental issue is also at play. In
particular, a series of assumptions and approximations commonly adopted in analyses of anelastic behaviour at long (i.e. tidal and Chandler
wobble) periods (Wahr & Bergen 1986) are not consistent with the treatment of dissipation in the seismic band (Lau et al. 2015) and obscure
differences between intrinsic (material) and apparent (observed) dissipation. A major goal of the present paper is to highlight these issues
and explore, in detail, inaccuracies introduced by adopting the traditional theory for modelling the anelastic response of the Earth in the tidal
band. As we will demonstrate, these inaccuracies include significant biases introduced in previous estimates of intrinsic dissipation across
tidal timescales and in extrapolating the frequency dependence of dissipation to longer periods.

A rigorous methodology for mapping between sample (i.e. experimental) scale and planetary-scale information, and for bridging between
observations at seismic and tidal timescales requires a generalized, self-consistent theoretical treatment of anelasticity. In this paper, we apply,
for this purpose, the generalized, normal mode theory of Lau et al. (2015) and a variant of this method [the direct solution (DS) method] that
has advantages in the practical application of the theory. In the next section, we begin by summarizing the relevant aspects of this new theory
and the traditional approach for modelling anelastic effects in the tidal band (Wahr & Bergen 1986).

Finally, although we focus here on applications to geophysics, the methodology we develop is equally relevant to studies of other
terrestrial planets. We return to this point in the concluding section of the paper.

2 T H E O R E T I C A L B A C KG RO U N D

Gilbert (1971) highlighted the fundamental connection between the deformation of the Earth in response to earthquakes and luni-solar tidal
forcing by pointing out that the normal modes of the Earth system relevant to seismic and tidal applications are precisely the same. In the
years subsequent to his seminal study, insights from a series of important developments in seismic free oscillation theory (e.g. Dahlen 1968;
Gilbert 1971; Woodhouse & Dahlen 1978; Woodhouse 1980; Park & Gilbert 1986) were incorporated into analyses of Earth’s body tides
and other longer period geodynamic processes (e.g. Smith & Dahlen 1981; Wahr 1981a,b; Wahr & Bergen 1986). However, the latter effort
did not always mirror the former, as is clear by comparing seismic normal mode treatments and body tide studies of the impact of rotation
(compare Dahlen (1968) with Wahr (1981b), Dehant (1987) and Wang (1994)) and asphericity (compare Woodhouse (1980) with Dehant
et al. (1999), Métivier & Conrad (2008), Latychev et al. (2009) and Qin et al. (2014)). Moreover, in considering anelastic effects, the standard
perturbation approach adopted in the body tide literature (Wahr & Bergen 1986) predates the seismic normal mode theories of Lognonné
(1991) and Tromp & Dahlen (1990), who derived generalized expressions for the orthogonality of eigenfunctions appropriate to this case.
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Lau et al. (2015), motivated by the availability of progressively more accurate and extensive space-geodetic measurements of body tide
deformation (e.g. Yuan & Chao 2012; Yuan et al. 2013), derived a generalized normal mode treatment of body tides using the full theoretical
machinery of modern seismic free oscillation theory and made appropriate extensions relevant for the tidal application. We begin by reviewing
this theory which hereafter we will term the ‘extended normal mode’ (ENM) theory.

2.1 Parametrizing anelasticity

We begin by introducing the frequency-domain fourth-order tensor �, which relates the deformation to the incremental first Piola-Kirchoff
stress tensor, TPK1, via the following expression:

TPK1(ω) = �(ω) : ∇s(ω). (1)

Here, ω is the (complex) frequency and s is the displacement, ∇ is the del-operator (and thus ∇s represents the full deformation tensor) and
the double-dot operation represents A : B = tr(AT · B). The Fourier transform convention for a function f used throughout this study is

F[ f (t)] ≡ f̃ (ω) =
∫ ∞

0
f (t) e−iωt dt, (2)

F−1[ f̃ (ω)] = f (t) = 1

2π

∫ +∞

−∞
f̃ (ω) eiωt dω. (3)

� must be analytic in the lower half of the complex plane (Dahlen & Tromp 1998) and additionally adhere to the following relations:

�∗(ω) = �(−ω∗), (4)

�i jmn(ω) = �mni j (ω), (5)

where eq. (4) must be satisfied in order to obtain a real-valued � in the time domain (O’Connell & Budiansky 1978) and the symmetry
relation (5) is commonly assumed to hold within viscoelasticity. For a discussion of the physical significance of eq. (5), see Day (1971a,b).
The scalar components of � represent specific moduli. For an isotropic medium, there are two such moduli: the shear modulus and the bulk
modulus, μ and κ , respectively. In this specific case, the elements of � are given by:

�i jmn(ω) =
[
κ(ω) − 2

3
μ(ω)

]
δi jδmn + μ(ω)

[
δimδ jn + δinδ jm

]+ 1

2

(
T 0

i jδmn + T 0
mnδi j + T 0

imδ jn − T 0
jmδin

− T 0
inδ jm − T 0

jnδ jm − T 0
jnδim

)
(6)

(eq. 3.146 and table 3.2 in Dahlen & Tromp 1998). Here, δij is the Kronecker delta and T0 is the initial stress tensor. Readers are directed to
chapters 2–3 of Dahlen & Tromp (1998) for a comprehensive review of these relations.

For an elastic medium, � is purely real and independent of ω. (In the following, and if necessary for clarity, we will denote any parameter,
X, associated with the elastic problem as X̄ .) If we denote a general scalar elastic modulus by M̄ , then once anelasticity is introduced

M̄ → M(ω) = M̄ + δM(ω), (7)

where δM is complex and a function of the complex frequency, ω, and thus M(ω) = M1(ω) + iM2(ω) where i = √−1. We do not discuss
the specific frequency dependence of M(ω) here, though this is an active area of research (e.g. Gribb & Cooper 1998; Jackson & Faul 2010;
McCarthy et al. 2011; Bellis & Holtzman 2014). It has been shown experimentally for materials exhibiting absorption band behaviour that
M1(ω) will decrease with decreasing frequency and M2(ω) will increase (e.g. Faul & Jackson 2015). The following ratio

Q(ω) ≡ M1(ω)

M2(ω)
(8)

is known as the quality factor of the modulus M (Chapter 1.3 in Nowick & Berry 1972), where arcsin[Q−1(ω)] describes the lag angle between
the stress and strain acting on M, and is also known as the loss angle. We note that in many applications where Q 	 1 (and thus the lag angle is
small), this angle is often listed as arctan[Q−1(ω)]. For a more complete discussion of this issue, the reader is referred to Efroimsky (2012b).
In this study, which is limited to the high Q regime, we will adopt the approximate form to aid comparisons to the literature. We emphasize,
however, that our theory does not require such an approximation. Q may also be interpreted in terms of energy loss where Q−1 represents the
fractional average energy dissipated per cycle and so we may also write

Q−1 ≡
∮

Ė dt

2ω
∮

E dt
, (9)

where E is the elastic energy density (Chapter 6 1.6 in Dahlen & Tromp 1998). The numerator and denominator represent the dissipated and
stored energies per cycle, respectively. The interpretation of Q−1 has caused confusion in the past, as outlined by O’Connell & Budiansky
(1978) and in this study we will highlight some continuing misinterpretations in the tidal application of Q—a key parameter that is ubiquitous
in discussions of anelasticity—in Section 3.2.
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To summarize, all information concerning the anelastic properties of the medium is stored within �(ω). How �(ω) fits into the general
framework of long period seismic and body tide problems is addressed next.

2.2 An ENM theory

Consider the governing equation for a self-gravitating, non-rotating, elastic Earth, forced by some arbitrary body force, f̃. The frequency-
domain equation in this case is given by

H̄(r)s(r; ω) − ω2s(r; ω) = f̃(r; ω), (10)

where

ρ(r) H̄(r)s(r; ω) = ρ(r) ∇φ(r; ω) + ρ(r) s(r; ω) · ∇∇(	(r)) − ∇ · [�̄(r) : ∇s(r; ω)]. (11)

Here, r is the position vector whose origin is at the centre of mass (we will use this to denote radius, r, co-latitude, θ , and east-longitude, ψ),
ρ is the mass density, and the following gravitational quantities,

	(r) = − G

∫
V

ρ(r′)
||r − r′|| dV ′, (12)

φ(r; ω) = − G

∫
V

ρ(r′) s(r′, ω) · (r − r′)
||r − r′||3 dV ′, (13)

are the equilibrium gravitational potential and incremental gravitational potential, respectively. In these expressions, G is the universal
gravitational constant and V is a volume that encompasses the Earth. We have omitted the impact of rotation on these expressions in order
to simplify discussion, however, the theory described in Lau et al. (2015) is able to incorporate this effect. Eq. (10) is solved along with the
following traction-free boundary condition:

n̂ · [�̄(r) : ∇s(r; ω)
] = 0, r ∈ �, (14)

where � is the surface of the Earth with unit outward normal n̂. When anelasticity is introduced �̄(r) → �(r; ω) and the governing equation
(10) becomes

H(r; ω)s(r; ω) − ω2s(r; ω) = f̃(r; ω). (15)

In the following, we will treat any dependency on r and ω as implicit unless the clarity of meaning demands otherwise. The homogeneous
version of eq. (15) is

H(ωk)sk − ωk
2sk = 0, (16)

where sk and ωk are the eigenfunctions and eigenfrequencies, respectively, for which there exists a non-trivial solution to eq. (16). (Note the
non-linearity in the eigenvalue parameter.) In Lau et al. (2015), the duality product first derived by Lognonné (1991) was incorporated into
the theory. In this paper, we choose to instead adopt the inner product to aid the comparison between the ENM theory and the traditional
normal mode theory of Wahr & Bergen (1986). (Yang & Tromp (2015) showed that the duality and inner product lead to equivalent results.)
Following Yang & Tromp (2015), we define the inner product as

〈sk, sk′ 〉 =
∫

V
ρ sk

∗ · sk′ dV, (17)

which has the following symmetries:

〈sk, sk′ 〉 = 〈sk′ , sk〉∗, (18)

〈sk,H(ωk′ )sk′ 〉 = 〈H∗(ωk)sk, sk′ 〉 = 〈sk′ ,H∗(ωk)sk〉∗. (19)

The eigenfunctions are normalized as follows

〈sk, sk′ 〉 − 1
2 ω−1

k 〈sk, ∂ωH(ωk′ )sk′ 〉 = δkk′ . (20)

Thus, eq. (16) has the following symmetry

H(−ω∗) = H∗(ω) (21)

and as such, one finds that if and only if ωk and sk are eigenmodes of eq. (16), then so too are −ω∗ and s∗ (Lognonné 1991).
After finding the eigenmodes, any solution s may be formed by the appropriate weighted sum of eigenfunctions sk with time dependence

given by ωk. In normal mode seismology, a Green function for such a system, that is the solution to a point force (subject to the appropriate
initial and boundary conditions), is given by (Lognonné 1991)

G(r, r′; t) = Re
∑

k

1

2iωk
sk(r)sk

∗(r′) exp(iωk t). (22)
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The function G is simplified in the normal mode seismology application due to the symmetry of eigenfrequencies ωk and −ωk
∗ such that G

is often quoted as (e.g. Dahlen & Tromp 1998):

G(r, r′; t) = Re
∑

k

Re{ωk }>0

1

iωk
sk(r)sk

∗(r′) exp(iωk t), (23)

where the summation includes only eigenfrequencies where Re{ωk} > 0. The simplification implied by eq. (23) cannot be used in the tidal
approach due to the existence of ‘relaxation modes’ which will be discussed in Section 2.2.1 (or see Lau et al. 2015). G describes the
time-domain response to an impulse force and convolving G with a time-domain force, f, yields the solution, s,

s(r; t) =
∫ t

t0

∫
V

G(r, r′; t − t ′) · f(r′, t ′) dV ′dt ′ +
∫ t

t0

∫
�

G(r, r′; t − t ′) · τ (r′, t ′) d�′dt ′ +
∫ t

t0

∫
V

B(r, r′; t − t ′) · f(r′, t ′) dV ′dt ′

+
∫ t

t0

∫
�

B(r, r′; t − t ′) · τ (r′, t ′) d�′dt ′, (24)

where t0 is the time of initiation of forcing f. The expression (24) includes an additional traction, τ , which generalizes our application to
include any surface force. B(r; t) is the contribution due to singularities of the frequency domain solution other than isolated simple poles,
which could potentially include features like branch cuts or other non-modal singularities. B arises due to the specific form we will adopt for
�(ω) (see Section 2.2.1). The existence of these non-modal singularities within the complex plane of ω greatly complicates the evaluation of
eq. (24).

We will consider the form of s(r; t) for two cases: the long period response to an earthquake with body force f and traction τ ; and the
body tide response to the forcing ρ∇� (where � is the tidal potential). In the earthquake problem, this form is written as

s(r; t) =
∫ t

t0

∫
V

G(r, r′; t − t ′) · f(r′, t ′) dV ′dt ′ +
∫ t

t0

∫
�

G(r, r′; t − t ′) · τ (r′, t ′) d�′dt ′, (25)

where
∫ t

t0

∫
V B(r, r′; t − t ′) · f(r′, t ′)dV ′dt ′ ≈ 0 and

∫ t
t0

∫
�

B(r, r′; t − t ′) · τ (r′, t ′)d�′dt ′ ≈ 0. These approximations are appropriate for many
seismic applications since, for plausible forms of �, seismic waves do not occur at very low frequencies and thus do not excite the non-modal
singularities associated with B to an appreciable extent. However, B is likely to be relevant for post-seismic deformation which occurs at
lower frequencies than co-seismic deformation. In contrast, for the body tide, the appropriate expression is

s(r; t) =
∫ t

t0

∫
V

ρ(r′) G(r, r′; t − t ′) · ∇�(r′, t ′) dV ′dt ′ +
∫ t

t0

∫
V

ρ(r′) B(r, r′; t − t ′) · ∇�(r′, t ′) dV ′dt ′, (26)

where one may include in eq. (26) the surface forcing in the case of ocean tidal loading by including the terms on the second and fourth
lines of eq. (24) and the appropriate expression for τ . In this case, realistic periodicities of the exciting potential ∇� are long enough for the
contribution from B to be relevant.

For the seismic problem, the full time dependence of the response is of interest, but for the tidal problem the steady-state solution is
required (that is, the transient component of the solution to eq. (26) associated with the initiation of forcing may be ignored). If we assume
�(r; t) has the form of a single harmonic we may write:

∇��m(r; t) = c�m exp[iωT t]
r �−1

a�

[
� Y�m(θ, ψ)r̂ +

√
�(� + 1)∇1Y�m(θ, ψ)

]
, (27)

where a is the radius of the Earth, ωT is the (real) tidal frequency, and c�m is a factor that accounts for the orbital properties of the forcing body
which produces ��m. Y�m is the spherical harmonic of degree � and order m following the normalization of Edmonds (1960). ∇1 represents
the projection of the gradient operator in the θ and ψ directions. In reality, there are many forcing harmonics but the linearity of the problem
allows the suite of tidal harmonics to be trivially superimposed.

At this point we depart from the treatment of a generalized Earth model to focus on the specialized case of a spherically symmetric
Earth model. We do this to take advantage of analytic results that will be useful in the illustrative case studies described in Section 3. The
theory of Lau et al. (2015) may be used to incorporate aspherical structure into any of those case studies. For spherically symmetric (and
self-gravitating) Earth models, the forcing given by eq. (27) will excite only spheroidal eigenmodes, sk , for which the eigenfunctions for these
may be expressed as

ns�m(r) = nU�(r )Y�m(θ, ψ)r̂ + n V�(r )
∇1Y�m(θ, ψ)√

�(� + 1)
. (28)

The single index k is used to denote �, m and the overtone number, n, of a mode. Note that we have dropped the m subscript for eigenfunctions

nU� and nV� as spherical symmetry results in degenerate eigenmodes in m. When necessary, �, m and n will be specified separately.
Thus, by substituting eqs (27) and (28) into eq. (26), and taking the limit t0 → −∞, the steady-state solution is given by

s(r, t) = −
∑

n

ns�m(r)

2nω�
2

∫
V

ρ(r ′)ns�m
∗(r′) · ∇��m(r; t) dV ′ −

∫ t

−∞
ρ(r ′) B(r, r′; t − t ′) · ∇��m(r′; t ′) dV ′dt ′. (29)
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After some algebra (which is detailed in Appendix A), one finds that∑
n

ns�m(r)
∫

V
ρ(r ′) ns�m

∗(r′) · ∇��m(r; t) dV ′ =
{∑

n

nU�(r )
∫ a

0
ρ(r )

r �+1

a�

[
�nU�(r ) +

√
�(� + 1)n V�(r )

]

× dr ��m(r)r̂ +
∑

n

n V�(r )√
�(� + 1)

∫ a

0
ρ(r )

r �+1

a�
[�nU�(r )

+
√

�(� + 1)n V�

]
dr ∇1��m(r)

}
exp[iωT t]. (30)

This term represents the excitation of spheroidal modes of degree � by a tidal potential of the same degree, �.

2.2.1 Eigenfrequencies on the complex plane

Complex eigenfrequencies incorporate two types of behaviour: oscillation (Re{ωk}) and relaxation (Im{ωk}, where Im{ωk} > 0). These
behaviours may be represented on the complex plane of ω, where the set of ωk are singularities of G̃(r, r′; ω) (the Fourier transform of the
Green tensor, G). In seismic free oscillation theory, the eigenfrequencies lie just above the real line, that is, Im{ω} � Re{ω}, and we will
henceforth refer to these as ‘dynamic modes’. Fig. 1(a) provides a schematic representation of the location of these dynamic modes on the
ω-plane. Due to the symmetry property stated in Section 2.2, these eigenfrequencies are comprised of reflected pairs about the imaginary
axis. In seismic normal mode calculations, it is common to assume that these modes ‘see’ Earth structure at real eigenfrequencies, since the
imaginary components are so small (Dahlen & Tromp 1998). To incorporate the effects of anelasticity on the eigenfrequency, a perturbation
theory is used that determines the deviation from the elastic eigenfrequency by taking into account the Q structure of the Earth. In general,
we have

ωk ≈ ω̄k + δωk (31)

where δωk is the small complex perturbation moving ω̄ (an eigenfrequency computed for an elastic Earth) upward and laterally in Fig. 1(a).
The real perturbation is due to dispersion (i.e. frequency dependence) and the imaginary perturbation is due to attenuation, both a consequence

Figure 1. (a) A schematic diagram of the complex plane of ω. Orange circles mark the dynamic modes used in seismic normal mode theory. Blue circles mark
the position of relaxation modes required, in addition to the dynamic modes, to accurately express the response to a tidal potential forcing. The orange dashed
line labelled δωk is the complex perturbation from the elastic eigenfrequency, ω̄k , due to anelastic effects. (b) A schematic diagram of the (real) modulus
reduction for two materials, A and B, due to the introduction of anelasticity. As in (a), orange circles mark the dynamic modes and blue circles mark the
(distinct) relaxation modes associated with the two models. Green circles illustrate the softening of the modulus assumed in the TNM treatment of anelastic
effects on body tides (see the text).
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of introducing anelasticity. The summation within the expression for G(r, r′; t) for the time-domain Green tensor (eq. 22) can be equivalently
expressed as an inversion of G̃(r, r′; ω) based on Cauchy’s residue theorem, where one assumes that singularities in the ω-plane are isolated
simple poles (Al-Attar 2007).

Lau et al. (2015) demonstrated that for the tidal problem additional contributions must be incorporated into the summation in eq. (22).
These so-called ‘relaxation’ modes would be located along the imaginary axis (i.e. Re{ωk} = 0) with a magnitude that is much smaller than
the imaginary part of the dynamic modes (Fig. 1a). Calculations in Lau et al. (2015) yielded a factor of ∼10 difference in magnitudes, however
this factor is highly model-dependent. These modes also exist in the seismic application but are, in most cases, of negligible importance in
that frequency band. Relaxation modes relevant to the post-glacial rebound modes would exist at smaller values along the positive imaginary
axis (that is, relatively long relaxation times) provided that such behaviour is incorporated in �(ω).

For models of �(ω) proposed in the literature (e.g. Anderson & Minster 1979; Benjamin et al. 2006; Faul & Jackson 2015) branch
points exist on the imaginary axis, and avoiding these features by taking branch cuts leads to the additional term involving the function B
in eq. (26). The structure of B is often too complicated to express analytically and in the following sections we will depart from the ENM
methodology and adopt a slight variant of this method that avoids these complexities. Nevertheless, the above derivation highlights: (1) the
importance of augmenting the mode set that seismologists consider with relaxation modes to rigorously capture the tidal response; and (2)
the deep connection between the seismic and tidal applications of normal mode theory.

2.2.2 DS method

The ENM treatment of body tides is useful for building physical intuition since eigenfrequencies reflect the characteristic timescales of the
response (in the case of both the dynamic and relaxation modes) while the sensitivity to internal structure is given by the depth-variation of
eigenfunctions. However, as noted above, alternative methods for the tidal problem are necessary once more realistic models of �(ω) are
adopted. One such method, which in its practical implementation has close similarities to the ENM approach, is the so-called DS method
which has been applied in seismological applications (e.g. Hara et al. 1993; Al-Attar 2007; Al-Attar et al. 2012). Rather than finding the
eigenmodes of the system (which by definition satisfy eq. 16), the DS method solves the equations governing the forced system (eq. 15).

Following Al-Attar (2007), we express the solution s as a superposition of an appropriate set of basis functions which, for example, may
be eigenfunctions of an elastic Earth, s̄. That is, the solutions to the equation

Hs̄k − ω̄k
2s̄k = 0. (32)

Thus, we seek appropriate values of β such that

s(r; t) =
∑

k

βk(t)s̄k(r). (33)

Substituting eq. (33) into eq. (15) and using eq. (27) for the forcing term ˜bbm f yields∑
k′

(〈s̄k,H(ωT )s̄k′ 〉 − ωT
2〈s̄k, s̄k′ 〉)βk′ = −〈s̄k, ∇�̃〉, (34)

where the normalization for an elastic earth is 〈s̄k, s̄k′ 〉 = δkk′ . �̃ is the frequency-domain forcing where �(t) = �̃ exp[iωT t]. The second
term 〈s̄k,H(ωT )s̄k′ 〉 introduces anelastic coupling between the elastic eigenfunctions; that is, non-zero elements exist when k �= k′. It may be
shown that

〈s̄k,H(ωT )s̄k′ 〉 = ω̄k′ 2δk′k + 〈s̄k, δH(ωT )s̄k′ 〉, (35)

where δH(ωT ) acts to perturb H (associated with the elastic problem) to the value required by the anelastic �(ωT ). Lau et al. (2015) showed
that for aspherical Earth models full coupling is essential to accurately capture any prediction of tidal deformation. However, in the special case
of spherically symmetry we are considering here they demonstrated that self-coupling (which we define as including diagonal components
only) provides an accurate approximation for sensible models of �(ωT ). Adopting the self-coupling approximation, we find that

βk = 〈s̄k,∇�̃〉
ω̄k

2 − ωT
2 + 〈s̄k, δH(ωT )s̄k〉 . (36)

Thus, the steady-state solution is given by

s(t) =
∑

k

∫
V ρ(r′) s̄n

∗ · ∇�̃ dV ′

[ω̄k
2 + εk

2(ωT )] − ωT
2

s̄k exp[iωT t], (37)

where we define εk
2 as

εk
2(ωT ) ≡ 〈s̄k, δH(ωT )s̄k〉. (38)

The term εk
2 represents a complex perturbation to ω̄k

2.
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2.3 Love numbers

For planetary-scale problems we may introduce tidal Love numbers (Love 1911; Shida 1912; Farrell 1972), which provide a mapping between
the forcing potential and response. This mapping is expressed in the spherical harmonic domain as

s(r; t) =
∑

�

h�(r )

g

[
r̂ · ∇��m(r; t)

]+
∑

�

l�(r )

g
[∇1��m(r; t)], (39)

where h is the Love number associated with radial displacement, sr, and l is the Love number associated with tangential displacements, sθ

and sψ . Given the linear nature of this system we may derive expressions for h and l using results from Section 2.2. In the case of the ENM
method, simple expressions for these parameters are not possible since we do not know the form of B. In contrast, in the case of the DS
method, combining eqs (30), (37) and (39) yields

h�(a; ωT ) = 1

g

∑
n

nŪ�(a)[
ω̄n

2 + εn
2(ωT )

]− ωT
2

∫ a

0
ρ(r )

r �+1

a�

[
�nŪ�(r ) +

√
�(� + 1) n V̄�(r )

]
dr (40)

and

l�(a; ωT ) = 1

g
√

�(� + 1)

∑
n

n V̄�(a)[
ω̄n

2 + εn
2(ωT )

]− ωT
2

∫ a

0
ρ(r )

r �+1

a�

[
�nŪ�(r ) +

√
�(� + 1) n V̄�(r )

]
dr, (41)

where we have evaluated the Love numbers at Earth’s surface, r = a (this will be implicitly assumed hereafter), and we have
made explicit the Love number dependence on the frequency of the forcing, ωT. As discussed above, the spherical-symmetry in
the adopted Earth model results in a (2� + 1)-degeneracy in the eigenmodes and thus the expressions (40-41) exhibit no m-
dependence. However, the tidal forcing does include such dependence, and this is reflected in eq. (39). The anelastic character is
captured in ε2 which gives rise to complex h(ωT) and l(ωT) values. Re{h(ωT)} represents the in-phase response and Im{h(ωT)}
represents the out-of-phase response, relative to the forcing potential. The same is true for l(ωT). Wahr (1981a) showed that the
Love numbers may be found by the appropriate superposition of the normal modes. However, in treating anelasticity, Wahr &
Bergen (1986) introduced approximations that yielded expressions for the complex Love numbers that do not match those in
eqs (40-41).

2.4 The traditional normal mode (TNM) theory

The most widely used theory to predict the effects of anelasticity on the body tide was formulated by Wahr & Bergen (1986), the last of a
series of canonical studies covering the effects on body tides of rotation, free-core nutation and anelasticity (Wahr 1981a,b; Wahr & Bergen
1986, respectively). We will hereafter refer to their approach as the ‘traditional normal mode’ (TNM) theory. The TNM theory assumes that
anelasticity perturbs existing elastic modes but would not introduce new modes, so that

ω̄k → ω̄k + δω̂k, (42)

where δω̂k is a real number. This perturbation, δω̂, is found by solving the following system:

Re{H(ωT )}ŝk − ω̂k
2ŝk = 0, (43)

where H(ωT ) is fixed to the forcing frequency of interest, ωT, and hence ω̂k = ω̄k + δω̂k . In this case, H is no longer a function of frequency
and [ω̂k

2, ŝk] are interpreted as eigenfrequency-eigenfunction pairs.
Strictly speaking, ŝk and ω̂k are not eigenmodes of a frequency-dependent Earth. True eigenmodes are computed by solving eq. (16);

that is, eigenmodes ‘see’ the Earth at their eigenfrequency, H = H(ωk). Moreover, eq. (16) involves H, not just its real part, and thus admits
the possibility of relaxation behaviour (and relaxation modes). As discussed above, these relaxation modes are essential to accurately capture
anelastic behaviour at frequencies beyond those of the dynamic modes (Fig. 1a; or see Lau et al. 2015). Henceforth, we will use the symbol
X̂ to denote any variable X associated with the pseudo-eigenvalue problem (eq. 43).

Fig. 1(b) is a schematic illustration of the variation in the real part of modulus M across a large frequency band. We show two hypothetical
models for Re{M}: A and B. If we were to solve the full eigenvalue problem as formulated within the seismological community we would
omit the relaxation modes and include only dynamic modes. With this subset of modes, the application of a tidal force at ωT (where it is
assumed that ωT lies far away from the seismic band) would lead to the same tidal predictions for both models A and B. The lowest frequency
sampled by dynamic modes of a typical Earth model (e.g. PREM, Dziewonski & Anderson 1981) is approximately 1 hr−1. Thus, behaviour
at lower frequencies than this, where A and B begin to diverge, is not captured. In contrast, applying Lau et al.’s (2015) ENM theory which
includes relaxation modes, or the DS variant, would yield distinct tidal predictions for models A and B. This is illustrated by the sampling of
relaxation modes at different frequencies for the different models (Fig. 1b).

Finally, in the TNM method, which solves the pseudo-eigenvalue problem (eq. 43), the resulting pseudo-eigenmodes are limited to (an
approximated version of) the dynamic modes. Specifically, the TNM treatment softens Re{M} to the values relevant for the Earth at ωT and
this is the Earth that the pseudo-eigenmodes sample, irrespective of their eigenfrequency value. This is shown schematically by the green
dashed lines in Fig. 1(b).
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We have not yet discussed how a fully complex response is calculated using the TNM theory. Wahr & Bergen (1986) solved
eq. (43), which is analogous to solving an elastic problem with elastic moduli fixed to a reduced value of �(ωT ), and this yielded real
[ω̂k

2, ŝk]. These eigenmodes were then combined to compute Re{ĥ}. (This approach is in contrast to the normal mode treatment of Tromp
& Dahlen (1990) and Lognonné (1991) who computed complex eigenmodes.) Next, assuming that the effects of anelasticity are small
enough that perturbations in �(ω) scaled linearly to perturbations in h, they computed the imaginary component of ĥ using the following
expression

Im{ĥ(ω)} =
∫ a

CMB

∂Re{ĥ(ω)}
∂ M(ω, r )

Im{δM(ω, r )} dr. (44)

Wahr & Bergen (1986) estimated the partial derivative in this expression as

∂Re{ĥ(ω)}
∂ M(ω, r )

≈ Re{ĥ(ω)} − h̄

Re{M(ω)} − M̄
, (45)

where h̄ may be found by setting ε2 → 0 in eq. (40). They discuss in detail choices of ω that yield stable estimates of the partial derivative.

3 C O M PA R I S O N O F P R E D I C T I O N S U S I N G T H E T N M A N D D S T H E O R I E S

Predictions of body tides have numerous applications, including: correcting a wide range of space-geodetic observables for the body tide
signal (e.g. IERS standards, Cartwright & Petit 2004; Petit & Luzum 2010); inferring anelastic structure from observations of tidal phase
lags (e.g. Ray et al. 2001; Benjamin et al. 2006); and, potentially, estimating long-wavelength elastic and density variations in the mantle
using tidal tomography (Métivier & Conrad 2008; Latychev et al. 2009; Qin et al. 2014; Lau et al. 2015). In this regard, given the same input
anelastic structure (defined by the tensor �(ω)), the TNM and more accurate ENM/DS treatments of the body tide response of the Earth will
predict different values of the frequency-dependent Love number h(ω). In this section, we present several simple numerical examples that
highlight these differences (Section 3.1) and discuss their implications for the interpretation of tidal phase lags (Section 3.2).

3.1 Numerical predictions

In the results below, we adopt several models for the form of �(ω) and predict the Love number h as well as a phase parameter ϒ , defined as:

ϒ ≡ arctan

(
Im{h}
Re{h}

)
. (46)

To begin, we repeat the calculations based on the TNM treatment to demonstrate that we can reproduce the Wahr & Bergen (1986) results for
the M2 semi-diurnal body tide (see Fig. 2). These calculations incorporate the isotropic elastic and density structure of seismic model 1066A
(Gilbert & Dziewonski 1975) and perturb this structure by assuming a frequency-dependent Q of the form:

Q(ω) = Q(ω0)

(
ω

ω0

)α

, (47)

where Q(ω0) is the attenuation at reference frequency ω0. We note that values for α across the seismic-tidal band have been shown to lie
between 0.1 and 0.35 (Faul & Jackson 2015) but as ω → 0, α → 1 if one adopts a Maxwell rheological model. The specific choice of
phenomenological model is, however, not a focus of this paper. Wahr & Bergen (1986) assumed dissipation in the shear modulus only, and
they adopted the expression

δμ = μ(ω0)
{

cot
(απ

2

) [
1 −

(ω0

ω

)α]
+ i

(ω0

ω

)α} 1

Qμ(ω0)
. (48)

In this equation, Qμ is the attenuation associated with μ. In tidal applications, it is common to exclude the contribution from bulk dissipation
(e.g. Wahr & Bergen 1986; Benjamin et al. 2006) since many Q models derived from seismic observations (e.g. Dziewonski & Anderson
1981; Durek & Ekstrom 1996) exhibit very high values for Qκ . More recent work, however, suggests that at these frequencies bulk dissipation
may play an important role when considering porous media in the presence of partial melt (Takei & Holtzman 2009). To incorporate bulk
dissipation in our theory, the appropriate expression for κ(ω) need only be inserted in the relevant elements of the stress tensor � (see eq. 6).
They furthermore adopted the depth-dependent attenuation models ‘QMU’ (Sailor & Dziewonski 1978) and ‘Model B’ (Sipkin & Jordan
1979). We performed predictions for three cases: (i) QMU with α = 0.0; (ii) QMU with α = 0.15 and (iii) Model B with α = 0.09. We note
that as α → 0,

δμ → μ(ω0)

[
2

π
ln

(
ω

ω0

)
+ i

]
1

Qμ(ω0)
(49)

(Kanamori & Anderson 1977). The results for all three cases in Fig. 2 show excellent agreement between predictions of the complex Love
number perturbation reported by Wahr & Bergen (1986) and our predictions based on their approach.

We next compare predictions based on the TNM theory and the DS theory using two models of mantle anelasticity described by Benjamin
et al. (2006). Both these models adopt the isotropic version of PREM (Dziewonski & Anderson 1981) and the depth-dependent Q structure
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Figure 2. Predictions of (a) the perturbations to the degree-2 tidal Love number, Re{δh} and Im{δh}, and (b) the predicted tidal phase lag, ϒ , calculated
using the (circles) TNM and (×s) DS (Lau et al. 2015) theories for five different Earth models distinguished on the basis of elastic and anelastic properties.
The crosses (+) are three results taken directly from the Wahr & Bergen (1986) study that derived the TNM approach. The overlap of the crosses and circles
demonstrates that we are able to correctly implement the TNM approach. We note that the reference frequencies, ωm, for the PREM Qμ (α = 0.3) and PREM
Qμ (α = 0.1) Earth models are 3.09 × 10−4 Hz and 5.0 × 10−4 Hz, respectively.

of PREM (Qμ only) at the reference frequency, f0, of 1 Hz (note we will use f when referring to numerical values for frequencies where f =
ω/2π ). The models also assume the frequency-dependent form of Q given by eq. (47). The perturbation to μ in both cases is given by

δμ(ω) =

⎧⎪⎨
⎪⎩

μ(ω0)
[

2
π

ln
(

ω

ω0

)
+ i
]

Q(ω0)−1, for ω ≥ ωm

μ(ω0)
[

2
π

{
ln
(

ωm
ω0

)
+ 1

α

[
1 − (

ωm
ω

)α]}+ i
(

ωm
ω

)α]
Q(ω0)−1, for ω < ωm,

(50)

where the free parameter ωm is the frequency that defines the onset of frequency-dependent behaviour in Q. We adopt two choices for this
frequency, fm, (chosen from a subset of values shown in figs 6 and 7 of Benjamin et al. 2006): (i) 3.09 × 10−4 Hz, with α = 0.2; and (ii) 5.0
× 10−3 Hz, with α = 0.1. Both these frequencies are significantly higher than the semi-diurnal frequency.

Fig. 2(a) shows that there is a systematic difference in the predictions based on the two theories. In both cases, the formulation of
Wahr & Bergen (1986) overestimates Re{δh} and Im{δh} by ∼50 per cent and ∼15 per cent, respectively. As a result, the traditional theory
overestimates the lag angle ϒ by ∼20 per cent (Fig. 2b).

3.2 Is intrinsic Q the same as ‘observed Q’?

In this section, we highlight the implications of our revision to the body tide theory for the interpretation of tidal observations. To begin, we
define ϒ as the observed phase lag at the planetary-scale with respect to the forcing and ϕ as the phase lag between stress and strain for a
material sample:

Q̌−1 ≈ tan[ϒ(ω)] = Im{h(ω)}
Re{h(ω)} , (51)

Q−1 ≈ tan[ϕ(ω)] = Im{Q(ω)}
Re{Q(ω)} . (52)

We refer to the quantity Q̌−1 as the apparent attenuation (i.e. the attenuation manifest in observations and to which tidal calculations discussed
above are compared) and Q−1 as the intrinsic (i.e. material) attenuation. It is common to assume that Q̌−1 and Q−1 are equivalent (Ray
et al. 2001; Benjamin et al. 2006). However, while the difference between the two parameters is subtle, we demonstrate in this section that
distinguishing between them is crucial for a robust understanding of Earth’s anelastic response across a wide frequency band.

To illustrate the relevant arguments, consider Fig. 3, which shows a schematic system involving a 1-D analogue of anelastic behaviour.
The spring-dashpot component is left incomplete to imply any linear combination of mechanical elements may be applied in this scenario
to represent the transient component (e.g. an absorption band, Kanamori & Anderson 1977). In addition to this, several components are
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Figure 3. A schematic illustration of the system described by eq. (16). The Kelvin–Voigt element is left incomplete to imply any combination of spring-dashpot
elements to form a transient component to the system. Additional components to the system include the mass component, ρV, to represent the presence of
inertia and the blue shading to represent the presence of self-gravity (see the text).

included in Fig. 3 which illustrate processes ongoing across the entire planet: inertia and self-gravity. The former is represented by the mass
component, ρV, and the latter by the blue shading. In previous studies, planetary-scale phase lags, ϒ , have been interpreted as reflecting
only the intrinsic anelastic property of the material that forms the building blocks of the planet (i.e. these studies have ignored the impact
of the mass component and gravitational body force on the observed lag; e.g. Wahr & Bergen 1986; Ray et al. 2001; Benjamin et al. 2006).
However, consideration of all these issues is required to accurately interpret the anelastic response of the Earth. In the following, we will use
numerical calculations to consider, in turn, each factor that distinguishes these two interpretations (inertia, self-gravity, energy considerations,
as defined below) and demonstrate how the intrinsic attenuation, Q−1, may be extracted from the apparent attenuation, Q̌−1.

We note that different processes (e.g. body waves or tides) will be sensitive to different regions of the spatially varying Q−1 structure
of the Earth (see e.g. the Q model of Durek & Ekstrom 1996). This issue will, in general, complicate the mapping between Q and Q̌ and
we address it in detail in future work. In the discussion below, we avoid this complication by adopting a simple anelastic Earth model and
focusing on observables with comparable spatial sensitivity. Nevertheless, the calculations are sufficiently complex to demonstrate the main
points in our present argument.

The calculations discussed below adopt the elastic and density structure of the seismic model PREM (Dziewonski & Anderson 1981).
We will assume a spatially uniform Qμ value of 250 throughout the mantle, and frequency dependence governed by eq. (50) with parameter
values α = 0.3, f0 = 1 Hz, and fm = 3.09 × 10−4 Hz. Fig. 4 (black line) shows the resulting frequency dependence of the intrinsic attenuation
Q−1.

The orange line on the same figure is the prediction of Q̌−1 based on the theory of Wahr & Bergen (1986) applied to the above model of
anelastic Earth structure. This prediction clearly differs from the imposed Q−1. If, for example, one were to assume that this prediction was
equivalent to intrinsic attenuation Q−1 (e.g. Ray et al. 2001; Benjamin et al. 2006), then one would overestimate the latter by a factor of ∼2
within the semi-diurnal frequency.

It is particularly important to emphasize the implications of the above error for inferences of the frequency dependence of Q−1. Tidal
and seismic observations sample anelastic behaviour at a relatively small set of frequencies. For example, let us presume that the red crosses
labelled A and B in Fig. 4 represent observations of attenuation with two distinct frequencies: a semi-diurnal tide, with frequency of 12 hr−1,
and the seismic free oscillation 0S2, with frequency of ∼1 hr−1. (Lau et al. (2015) demonstrated that 0S2 deformation is responsible for
95 per cent of the semi-diurnal body tide response, and thus both observations sample very similar Q structure (see Anderson & Minster
1979; Benjamin et al. 2006).) The goal in the application of TNM theory of body tides would be to accurately predict the observation A, and
this might lead, for example, to the orange line in Fig. 4. As noted above, whilst this is in fact a prediction of apparent attenuation, it has been
commonly interpreted as an accurate proxy for the intrinsic attenuation at this frequency. In contrast, seismic normal mode measurements of
the decay time of the 0S2 mode would infer the correct value of intrinsic attenuation Q(ω)−1 at 1 hr−1, that is, the value at point B. Using these
two observables, one might suppose a variety of trends in the intrinsic attenuation between A and B, but a simple straight line (or equivalently,
a constant exponent in ωα) would clearly yield an inaccurate model for the true trend.

The solid cyan line in Fig. 4 shows the trend in Q̌−1 computed using the DS theory. Of course, it would also be incorrect to assume that
these predictions reflect the intrinsic attenuation, but the following question arises: If calculations of Q̌−1 in the tidal band based on the DS (or
ENM) theory and a specific model of anelastic structure, fit available observations, can one extract a robust estimate of intrinsic attenuation
and (through a comparison with seismic observation of attenuation) its frequency dependence? To answer this question requires that we
consider and correct for each of the physical cases that differentiate the intrinsic attenuation from the observed (and modelled) response of
the Earth (i.e. the apparent attenuation). In this regard, in the next three sections we outline a set of progressive corrections that accurately
map Q̌−1(ω), as computed using the DS and ENM methods, into Q−1(ω).
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Figure 4. Intrinsic attenuation, Q−1 (black line), as a function of frequency associated with the anelastic Earth model described in the text (see Section 3.2).
The remaining lines are various predictions of apparent attenuation, Q̌−1, based on the same Earth model: orange line—prediction using the TNM theory; solid
cyan line—prediction using the DS theory; dashed cyan line—correction to the solid cyan line to remove the impact of inertia; dotted cyan line—correction
to the solid cyan line to remove the impact of both inertia and self-gravity; dashed-dotted cyan line (coincident with the black line)—calculation in which the
solid cyan line is mapped into intrinsic attenuation using the expression (61). The two highest frequency predictions using the DS theory (solid cyan line) have
been multiplied by −1 so that they may be plotted on the same log–log scale. (We note in this regard that a system will oscillate in antiphase with a forcing if
the forcing has a frequency well above the resonant frequency of the system.) Points A and B mark frequencies that can be realistically observed on Earth: the
semi-diurnal tide M2 and the 0S2 normal mode, respectively. See Section 3.2 for further discussion.

3.3 Inertia

Consider, once again, the apparent attenuation in Fig. 4 computed using the DS theory. At frequencies lower than ∼4 × 10−4 rad s−1 the slope
of Q̌−1(ω) accurately tracks the trend in intrinsic attenuation Q−1, however the values on the former are offset to lower values than those on
the latter. The difference between the predictions of Q̌−1 based on the TNM and DS (or ENM) theories is to be expected given the results in
Fig. 2(b). The large swing in Q̌−1 predicted by the DS theory at frequencies above ∼4 × 10−4 rad s−1 is due to resonant effects associated
with the dynamic eigenmodes (the lowest frequency of which is ≈1 hr−1).

The first correction toward mapping the Q̌−1 prediction computed using the DS (or ENM) method into an estimate of the intrinsic
attenuation thus involves the removal of this resonance effect. This is equivalent to neglecting inertia in the calculation by invoking the limit
ωT → 0 in eqs (40) and (41). The result of applying this correction is shown by the dashed cyan line in Fig. 4, which now accurately follows
(with a constant offset) the frequency dependence of Q−1.

3.4 Self-gravity

The tidal force causes expansional deformation on the Earth and acting against this deformation are the elastic restoring forces and inward
self-gravity which are embedded in the operator H (eq. 11). In the case of the body tide problem, both forces in H resist the expansion and as
such, the self-gravity term provides an additional effective rigidity to the elastic rigidity. We note that Efroimsky (2012a, 2013) discusses this
physics in relation to Earth and super-Earths and argues that the effect cannot be ignored when considering tidal dissipation on such planets.
The same process acts on Earth, and contributes to a difference in intrinsic and apparent attenuation. To remove gravity from the general
equations, we take the limits 	 → 0 and φ → 0, so that the operator H in eq. (11) becomes

ρ H s = −∇ · (� : ∇s). (53)

In this case, the only restoring force arises from the elastic properties of the Earth. In the schematic Fig. 3, this would be equivalent to
removing the body force from the system. This procedure represents the second correction necessary to map Q̌−1 to Q−1, and applying it
to the dashed cyan line in Fig. 4 yields the result shown by the dotted cyan line. The resultant reduction in the attenuation is due to the
increase of Re{h} associated with a lowering of the effective rigidity when gravitational body forces are removed. Moreover, the constant shift
downwards from dashed to dotted cyan line reflects the fact that the contribution from gravity is independent of frequency. We further note
that self-gravity would have the opposite effect if the induced deformation was compressional, acting in the same direction as the external
forcing, thus lessening the effective rigidity.
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3.5 Energy considerations

In this section we revisit eq. (40), though we note that all the results below hold for eq. (41). Removing the impact of inertia from eq. (40), as
discussed in Section 3.3, yields

h�(ωT ) = 1

g

∑
n

nŪ�

ω̄n
2 + εn

2

∫ a

0
ρ(r )

r �+1

a�

[
�nŪ�(r ) +

√
�(� + 1)n V̄�(r )

]
dr. (54)

Following Section 3.4, we note that the eigenfunctions and eigenfrequencies in these expressions are associated with a system without
self-gravity (the operator H is given by eq. 53).

To complete the mapping between Q̌−1 and Q−1 we recall arguments made by O’Connell & Budiansky (1978) who, in a similar vein as
the present study, set out to clarify the distinction between the intrinsic Q−1 of a material and measures of Q̌−1 in several phenomenological
processes (e.g. travelling plane waves, standing waves). In particular, we interpret Q−1 using energy considerations as briefly mentioned in
Section 2.1. To begin, we rewrite the definition in eq. (9) as

Q−1 ≡ �W

W
, (55)

where �W and W represent the dissipated and stored energies per cycle, respectively. When considering a vibrating system close to resonance,
one may treat the system as having only one degree of freedom; we can thus identify the pair �Wk and Wk for each eigenmode, k. We note
that such an approach already exists in the seismic normal mode literature (see Dahlen & Tromp 1998). Accordingly, for the particular case
described by eq. (54), invoking the definition given by eq. (51) yields (see Appendix B):

Q̌−1 =
∑

k χk Im{εk
2}∑

k χk (ω̄k
2 + Re{εk

2})

=
∑

k χk

∫
V ∇s∗

k : Im{(�(ωT )} : ∇sk dV∑
k χk (ω̄k

2
∫

V ρ sk
∗ · sk dV + ∫

V ∇s∗
k : Re{δ�(ωT )} : ∇sk dV )

,

(56)

where

χk =
∫ a

0 ρ(r ) r�+1

a�

[
�nŪ�(r ) +√

�(� + 1)n V̄�(r )
]

dr

ω̄k
4 + Im{εk

2}2
. (57)

χ k represents a weighting of each mode which reflects excitation by the tidal forcing.
The first term in the denominator of eq. (56) is the kinetic energy (this term is equivalent to the stored elastic energy) and the second

term is the energy correction associated with dispersion. The numerator is the energy loss due to dissipation. That is,

�Wk = χk

∫
V

∇sk
∗ : Im{�(ωT )} : ∇sk dV, (58)

where, for the specific Q model we have prescribed (i.e. where all dissipation occurs in shear energy)

�Wk = χk

∫
V

2μ (dk
∗ : dk) Qμ(ω)−1 dV . (59)

In this expression d is the deviatoric strain. Since the energy associated with dispersion is much smaller than the elastic energy, one can make
the following approximation

Wk ≈ χkω̄k
2

∫
V

ρ sk
∗ · sk dV, (60)

where, if the system included self-gravity, an additional gravitational potential energy term would contribute to W. Our final, complete form
for the mapping between Q̌−1 and Q−1 is thus given by

Q̌−1(ωT ) =
(∑

k χk

∫
V 2μ (dk

∗ : dk) dV∑
k χk ω̄k

2
∫

V ρ sk
∗ · sk dV

)
Q−1(ωT ). (61)

This expression relates the apparent attenuation arising from a planetary-scale phase lag in the tidal response to the intrinsic attenuation of the
material that comprises the planet. The simple mapping between Q̌−1 and Q−1 is only possible in our specialized case where Q−1 is spatially
uniform. Using this expression in Fig. 4 yields a line that precisely matches the intrinsic attenuation Q(ω)−1 adopted in the simulations.

We note that Nowick & Berry (1972, Appendix A) present an analysis of the energy budget for the case of a 1-D spring-dashpot system.
The mapping between Q̌−1 and Q−1 for their toy example is analogous to our eq. (61).

4 C O N C LU D I N G R E M A R K S

Lau et al. (2015) presented an ENM theory for predicting body tides on an aspherical, rotating and anelastic Earth. In this paper, we have
elaborated on the ENM theory, as well as a relatively minor variant, the DS approach, and have explored the implications of the theory for
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the modelling of anelastic effects and interpretations of relevant observations. Our theory differs from the TNM theory of Wahr & Bergen
(1986) in several significant ways:

(i) it is based on a pure normal mode formalism that is in accord with, and extends, the theory used in seismic free oscillation research by
incorporating a set of relaxation modes that are not considered in the TNM theory; and

(ii) it treats anelastic effects on each mode by determining the imaginary perturbation to their eigenfrequencies. The TNM theory, in
contrast, estimates the imaginary part of the full response by considering the imaginary part of the modulus perturbation.

Given the same model for anelastic Earth structure, the more accurate ENM (or DS) theory will predict a different perturbations to tidal
Love numbers than the TNM method and this will have implications not only for the inferences of the anelastic structure of the Earth but also
for model-based corrections to geodetic data that are applied to remove the body tide signal.

We have also demonstrated that previous analyses of the tidal phase lag observation have, in effect, assumed that the tidal lag angle
on a planetary-scale is the same as the loss angle (i.e. the lag angle between the stress and strain acting on a material sample, see eq. 52).
We have shown that if inertia, self-gravity and energy considerations are taken into account, the true loss angle, or equivalently the intrinsic
Q−1, may be accurately extracted from the observed planetary phase lag, or apparent Q̌−1. If these issues are not addressed, it is likely
that systematic biases in the estimates of the frequency dependence of Q−1 will arise. Our formulation provides a rigorous procedure for
estimating intrinsic attenuation in the tidal band and for connecting measurements of dissipation across frequencies that span tidal to seismic
processes.

As a final note, we emphasize that the generalized treatment of anelasticity described here and in Lau et al. (2015) may be applied to
investigate the response of other planetary bodies to tidal forcing. Indeed, planetary science provides a far broader range of physical conditions
than the geophysical applications we have focused on, and this range will no doubt sample regimes with sensitivities vastly different from
those explored in our simple numerical examples. As one obvious example, the impact of self-gravitation on the anelastic response of massive
super-Earths will be significantly larger than the already important effect revealed in Fig. 4. More generally, observational constraints on
other terrestrial bodies are often limited to an estimate of the tidal Love number, and the correct interpretation of this number is then clearly
critical to any assessment of physical conditions of that body.
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A P P E N D I X A : M O D E E XC I TAT I O N B Y A T I DA L P O T E N T I A L

The tidal potential, �(r; t), exerted at a site r = [r, θ, ψ] by some celestial body of mass Mi located at ri = [ri (t), θi (t), ψi (t)] is given by

�(r; t) = − G Mi

‖r − ri (t)‖ = − G Mi

di

∞∑
�=0

(
r

di

)�

P�(cos ξi ), (A1)

where di = ‖r − ri (t)‖ and the azimuth, ξ i, between r and ri is

r̂ · r̂i = cos ξi = cos θ cos θi + sin θ sin θi cos(ψ − ψi ). (A2)
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P�(x) is the Legendre polynomial of degree � (or the associated Legendre function of order 0). We may express � as

�(r; t) = Hi (t)
∞∑

�=0

(
r

di

)�

P�(cos ξi ), (A3)

where Hi = −GMi/di(t). � may also be expressed this as in eq. (27), where

c�m = Hi

(
4π

2� + 1

)
Y�m

∗(θi , ψi ). (A4)

To arrive at eq. (30) from eq. (29), we begin by substituting expressions for sk (eq. 28) and � (eq. 27) into the following expression

J =
∞∑
n

∞∑
�

∞∑
m

ns�m(r)
∫

ρ(r ′)ns�m
∗(r′) · ∇��m(r; t) dV ′,

(A5)

which yields

nJ�m =
(

nU� Y�m r̂ + n V�√
�(� + 1)

∇1Y�m

)
·
∫

ρ(r′)

[
nU� Y�m

∗r̂ + n V�√
�(� + 1)

∇1Y�m
∗
]

·

Hi

(
4π

2� + 1

)
Y�m

∗(θi , ψi ) exp[iωT t]
r �−1

a�

[
� Y�m r̂ +

√
�(� + 1)∇1Y�m

]
dV ′. (A6)

We have dropped the eigenfunction dependence on m due to the spherical symmetry of the Earth model. Using the following relations∫
A

Y�m r̂ · Y�′m′ ∗ r̂ dA = δ��′δmm′ , (A7)

and∫
A

(∇1Y�m) · (∇1Y�′m′ ∗)√
�(� + 1)

√
�′(�′ + 1)

dA = δ��′δmm′ , (A8)

where A represents the unit area of a sphere, eq. (A6) simplifies to

nJ�m =
(

nU� Y�m r̂ + n V�√
�(� + 1)

∇1Y�m

)
× Hi

(
4π

2� + 1

)
Y�m

∗(θi , ψi ) exp(iωT t)
∫

ρ(r )
r �−1

a�

[
�nU� +

√
�(� + 1)n V�

]
dr. (A9)

To compute the amplitude of the tidal response, we evaluate Y�m at [θ i, ψ i]. Using the identity

P�(cos θi ) =
(

4π

2� + 1

) �∑
m=−�

Y�m(θi , ψi )Y�m
∗(θi , ψi ), (A10)

yields

nJ� = Hi

(
nU� P�(cos θi )r̂ + n V� ∇1 P�(cos θi )√

�(� + 1)

)∫
ρ(r )

r �−1

a�

[
�nU� +

√
�(� + 1)n V�

]
dr exp[iωT t]. (A11)

Finally, applying the expression for the tidal potential given by eq. (A3) results in

J� =
∑

n

{
nU�(r )

∫
ρ(r )

r �+1

a�

[
�nU�(r ) +

√
�(� + 1)n V�(r )

]
dr ��(r) r̂ n V�(r )√

�(� + 1)∫
ρ(r )

r �+1

a�

[
�nU�(r ) +

√
�(� + 1)n V�(r )

]
dr ∇1��(r)

}
exp[iωT t]. (A12)

A P P E N D I X B : E X T R A C T I N G Q −1 F RO M h ( ω)

To arrive at eq. (56) recall the definition of Q̌−1 given by eq. (51). To extract the real and imaginary parts of h(ω) we begin by rationalizing
the denominator of eq. (56) where

(ω̄n
2 + εn

2)(ω̄n
2 + εn

2)∗ = (ω̄n
2 + Re{εn

2})2 + Im{εn
2}2. (B1)

Ignoring second-order terms involving Re{εn
2} (where Re{εn

2} � ω̄n
2) we find that

(ω̄n
2 + εn

2)(ω̄n
2 + εn

2)∗ ≈ ω̄n
4 + Im{εn

2}2. (B2)

Thus,

hk(ω) = 1

g
χk

[
ω̄k

2 + Re{εk
2} + iIm{εk

2}] , (B3)
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where

χk = 1

ω̄k
4 + Im{εk

2}2

∫ a

0
ρ(r )

r �+1

a�

[
�nŪ�(r ) +

√
�(� + 1)n V̄�(r )

]
dr. (B4)

From the definition of ε2 (eq. 38) and using eq. (11) (ignoring gravity-related terms), we see that

Re{〈s̄k, δH(ωT )s̄k〉} =
∫

V
∇sk

∗ : Re{δ�(ωT )} : ∇sk dV, (B5)

Im{〈s̄k, δH(ωT )s̄k〉} =
∫

V
∇sk

∗ : Im{δ�(ωT )} : ∇sk dV, (B6)

where Im{δ�(ω)} = Im{�(ω)}.


