4 research outputs found

    Night fish avoidance of Microcystis bloom revealed by simultaneous hydroacoustic measurements of both organisms

    No full text
    Abstract Simultaneous observations of fish and cyanobacteria were conducted in the shallow Sulejów Reservoir (Poland) during the occurrence of Microcystis bloom. A Simrad EY60 split beam echosounder with a 200 kHz transducer beaming horizontally was applied to assess fish and cyanobacteria spatial distribution. Additionally, fish size distribution and species composition were evaluated with gillnets, and cyanobacterial biomass was determined by using an online phycocyanin fluorescence probe. Physico-chemical parameters and water samples for biological analyses were collected at 14 fixed stations situated along the acoustic transects. We found cyanobacteria represented by the genus Microcystis, with their toxigenic genotypes in all analyzed samples. The hydroacoustic results provided direct evidence for fish night avoidance of the bloom. The biomass of fish and cyanobacteria demonstrated opposing trends and their peak values spatially mismatched. The number of fish caught in gillnets within the bloom area was about half that caught outside the bloom area. In spite of the presence of intracellular microcystins (hepatotoxin) at all stations, no extracellular microcystins were identified in water samples and in fish tissues

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    Get PDF
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L-1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4 degrees C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature.Peer reviewe

    Stratification strength and light climate explain variation in chlorophyll <i>a </i>at the continental scale in a European multilake survey in a heatwave summer

    No full text

    Stratification strength and light climate explain variation in chlorophyll a at the continental scale in a European multilake survey in a heatwave summer

    No full text
    To determine the drivers of phytoplankton biomass, we collected standardized morphometric, physical, and biological data in 230 lakes across the Mediterranean, Continental, and Boreal climatic zones of the European continent. Multilinear regression models tested on this snapshot of mostly eutrophic lakes (median total phosphorus [TP] = 0.06 and total nitrogen [TN] = 0.7 mg L−1), and its subsets (2 depth types and 3 climatic zones), show that light climate and stratification strength were the most significant explanatory variables for chlorophyll a (Chl a) variance. TN was a significant predictor for phytoplankton biomass for shallow and continental lakes, while TP never appeared as an explanatory variable, suggesting that under high TP, light, which partially controls stratification strength, becomes limiting for phytoplankton development. Mediterranean lakes were the warmest yet most weakly stratified and had significantly less Chl a than Boreal lakes, where the temperature anomaly from the long-term average, during a summer heatwave was the highest (+4°C) and showed a significant, exponential relationship with stratification strength. This European survey represents a summer snapshot of phytoplankton biomass and its drivers, and lends support that light and stratification metrics, which are both affected by climate change, are better predictors for phytoplankton biomass in nutrient-rich lakes than nutrient concentrations and surface temperature
    corecore