232 research outputs found

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Sex-specific features of spine densities in the hippocampus

    No full text
    Abstract Previously, we found that in dissociated hippocampal cultures the proportion of large spines (head diameter ≥ 0.6 μm) was larger in cultures from female than from male animals. In order to rule out that this result is an in vitro phenomenon, we analyzed the density of large spines in fixed hippocampal vibratome sections of Thy1-GFP mice, in which GFP is expressed only in subpopulations of neurons. We compared spine numbers of the four estrus cycle stages in females with those of male mice. Remarkably, total spine numbers did not vary during the estrus cycle, while estrus cyclicity was evident regarding the number of large spines and was highest during diestrus, when estradiol levels start to rise. The average total spine number in females was identical with the spine number in male animals. The density of large spines, however, was significantly lower in male than in female animals in each stage of the estrus cycle. Interestingly, the number of spine apparatuses, a typical feature of large spines, did not differ between the sexes. Accordingly, NMDA-R1 and NMDA-R2A/B expression were lower in the hippocampus and in postsynaptic density fractions of adult male animals than in those of female animals. This difference could already be observed at birth for NMDA-R1, but not for NMDA-R2A/B expression. In dissociated embryonic hippocampal cultures, no difference was seen after 21 days in culture, while the difference was evident in postnatal cultures. Our data indicate that hippocampal neurons are differentiated in a sex-dependent manner, this differentiation being likely to develop during the perinatal period

    Aromatase Expression in the Hippocampus of AD Patients and 5xFAD Mice

    No full text
    Numerous studies show that 17β-estradiol (E2) protects against Alzheimer’s disease (AD) induced neurodegeneration. The E2-synthesizing enzyme aromatase is expressed in healthy hippocampi, but although the hippocampus is severely affected in AD, little is known about the expression of hippocampal aromatase in AD. To better understand the role of hippocampal aromatase in AD, we studied its expression in postmortem material from patients with AD and in a mouse model for AD (5xFAD mice). In human hippocampi, aromatase-immunoreactivity was observed in the vast majority of principal neurons and signal quantification revealed higher expression of aromatase protein in AD patients compared to age- and sex-matched controls. The tissue-specific first exons of aromatase I.f, PII, I.3, and I.6 were detected in hippocampi of controls and AD patients by RT-PCR. In contrast, 3-month-old, female 5xFAD mice showed lower expression of aromatase mRNA and protein (measured by qRT-PCR and semiquantitative immunohistochemistry) than WT controls; no such differences were observed in male mice. Our findings stress the importance of hippocampal aromatase expression in neurodegenerative diseases

    The impact of sex steroids on cognition

    No full text

    NKCC1-dependent GABAergic excitation drives synaptic network maturation during early hippocampal development.

    Get PDF
    A high intracellular chloride concentration in immature neurons leads to a depolarizing action of GABA that is thought to shape the developing neuronal network. We show that GABA-triggered depolarization and Ca2+ transients were attenuated in mice deficient for the Na-K-2Cl cotransporter NKCC1. Correlated Ca2+ transients and giant depolarizing potentials (GDPs) were drastically reduced and the maturation of the glutamatergic and GABAergic transmission in CA1 delayed. Brain morphology, synaptic density, and expression levels of certain developmental marker genes were unchanged. The expression of lynx1, a protein known to dampen network activity, was decreased. In mice deficient for the neuronal Cl-/HCO3- exchanger AE3, GDPs were also diminished. These data show that NKCC1-mediated Cl- accumulation contributes to GABAergic excitation and network activity during early postnatal development and thus facilitates the maturation of excitatory and inhibitory synapses
    corecore