153 research outputs found

    Applications of patching to quadratic forms and central simple algebras

    Full text link
    This paper provides applications of patching to quadratic forms and central simple algebras over function fields of curves over henselian valued fields. In particular, we use a patching approach to reprove and generalize a recent result of Parimala and Suresh on the u-invariant of p-adic function fields, for p odd. The strategy relies on a local-global principle for homogeneous spaces for rational algebraic groups, combined with local computations.Comment: 48 pages; connectivity now required in the definition of rational group; beginning of Section 4 reorganized; other minor change

    Stochastic Theory of Accelerated Detectors in a Quantum Field

    Full text link
    We analyze the statistical mechanical properties of n-detectors in arbitrary states of motion interacting with each other via a quantum field. We use the open system concept and the influence functional method to calculate the influence of quantum fields on detectors in motion, and the mutual influence of detectors via fields. We discuss the difference between self and mutual impedance and advanced and retarded noise. The mutual effects of detectors on each other can be studied from the Langevin equations derived from the influence functional, as it contains the backreaction of the field on the system self-consistently. We show the existence of general fluctuation- dissipation relations, and for trajectories without event horizons, correlation-propagation relations, which succinctly encapsulate these quantum statistical phenomena. These findings serve to clarify some existing confusions in the accelerated detector problem. The general methodology presented here could also serve as a platform to explore the quantum statistical properties of particles and fields, with practical applications in atomic and optical physics problems.Comment: 32 pages, Late

    States insensitive to the Unruh effect in multi-level detectors

    Full text link
    We give a general treatment of the spontaneous excitation rates and the non-relativistic Lamb shift of constantly accelerated multi-level atoms as a model for multi-level detectors. Using a covariant formulation of the dipole coupling between the atom and the electromagnetic field we show that new Raman-like transitions can be induced by the acceleration. Under certain conditions these transitions can lead to stable ground and excited states which are not affected by the non inertial motion. The magnitude of the Unruh effect is not altered by multi-level effects. Both the spontaneous excitation rates and the Lamb shift are not within the range of measurability.Comment: 9 Pages, late

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits

    Get PDF
    Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)

    The On-orbit Calibrations for the Fermi Large Area Telescope

    Full text link
    The Large Area Telescope (LAT) on--board the Fermi Gamma ray Space Telescope began its on--orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.Comment: 60 pages, 34 figures, submitted to Astroparticle Physic
    corecore