917 research outputs found

    Two-dimensional elastoplastic analysis of cylindrical cavity problems in Tresca materials

    Get PDF
    This paper presents analytical elastic-plastic solutions for static stress loading analysis and quasi-static expansion analysis of a cylindrical cavity in Tresca materials, considering biaxial far-field stresses and shear stresses along the inner cavity wall. The two-dimensional static stress solution is obtained by assuming that the plastic zone is statically determinate and using the complex variable theory in the elastic analysis. A rigorous conformal mapping function is constructed, which predicts that the elastic-plastic boundary is in an elliptic shape under biaxial in situ stresses, and the range of the plastic zone extends with increasing internal shear stresses. The major axis of the elliptical elastic-plastic boundary coincides with the direction of the maximum far-field compression stress. Furthermore, considering the internal shear stresses, an analytical large-strain displacement solution is derived for continuous cavity expansion analysis in a hydrostatic initial stress filed. Based on the derived analytical stress and displacement solutions, the influence of the internal shear stresses on the quasi-static cavity expansion process is studied. It is shown that additional shear stresses could reduce the required normal expansion pressure to a certain degree, which partly explains the great reduction of the axial soil resistance due to rotations in rotating cone penetration tests. In addition, through additionally considering the potential influences of biaxial in situ stresses and shear stresses generated around the borehole during drillings, an improved cavity expansion approach for estimating the maximum allowable mud pressure of horizontal directional drillings (HDDs) in undrained clays is proposed and validated

    Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites

    Get PDF
    Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter Ό, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, Ό was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery

    Antecedents and consequences of effectuation and causation in the international new venture creation process

    Get PDF
    The selection of the entry mode in an international market is of key importance for the venture. A process-based perspective on entry mode selection can add to the International Business and International Entrepreneurship literature. Framing the international market entry as an entrepreneurial process, this paper analyzes the antecedents and consequences of causation and effectuation in the entry mode selection. For the analysis, regression-based techniques were used on a sample of 65 gazelles. The results indicate that experienced entrepreneurs tend to apply effectuation rather than causation, while uncertainty does not have a systematic influence. Entrepreneurs using causation-based international new venture creation processes tend to engage in export-type entry modes, while effectuation-based international new venture creation processes do not predetermine the entry mod

    Towards Whole Placenta Segmentation At Late Gestation Using Multi-View Ultrasound Images

    Get PDF
    We propose a method to extract the human placenta at late gestation using multi-view 3D US images. This is the first step towards automatic quantification of placental volume and morphology from US images along the whole pregnancy beyond early stages (where the entire placenta can be captured with a single 3D US image). Our method uses 3D US images from different views acquired with a multi-probe system. A whole placenta segmentation is obtained from these images by using a novel technique based on 3D convolutional neural networks. We demonstrate the performance of our method on 3D US images of the placenta in the last trimester. We achieve a high Dice overlap of up to 0.8 with respect to manual annotations, and the derived placental volumes are comparable to corresponding volumes extracted from MR.Wellcome Trust IEH Award; EPSRC Centre for Medical Engineering; National Institute for Health Research (NIHR); King’s College London; NHS Foundation Trus

    Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression

    Get PDF
    Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tumour progression and metastasis. In this study, we investigated the in vitro and in vivo expression patterns of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1 and TIMP-2 mRNA and protein in a previously described human melanoma xenograft model. This model consists of eight human melanoma cell lines with different metastatic behaviour after subcutaneous (s.c.) injection into nude mice. MMP-1 mRNA was detectable in all cell lines by reverse transcription polymerase chain reaction (RT-PCR), but the expression was too low to be detected by Northern blot analysis. No MMP-1 protein could be found using Western blotting. MMP-2 mRNA and protein were present in all cell lines, with the highest expression of both latent and active MMP-2 in the highest metastatic cell lines MV3 and BLM. MMP-3 mRNA was expressed in MV3 and BLM, and in the non-metastatic cell line 530, whereas MMP-3 protein was detectable only in MV3 and BLM. None of the melanoma cell lines expressed MMP-9. TIMP-1 and TIMP-2 mRNA and protein, finally, were present in all cell lines. A correlation between TIMP expression level and metastatic capacity of cell lines, however, was lacking. MMP and TIMP mRNA and protein expression levels were also studied in s.c. xenograft lesions derived from a selection of these cell lines. RT-PCR analysis revealed that MMP-1 mRNA was present in MV3 and BLM xenografts, and to a lesser extent in 530. Positive staining for MMP-1 protein was found in xenograft lesions derived from both low and high metastatic cell lines, indicating an in vivo up-regulation of MMP-1. MMP-2 mRNA was detectable only in xenografts derived from the highly metastatic cell lines 1F6m, MV3 and BLM. In agreement with the in vitro results, the highest levels of both latent and activated MMP-2 protein were observed in MV3 and BLM xenografts. With the exception of MMP-9 mRNA expression in 530 xenografts, MMP-3, MMP-9, and TIMP-1 mRNA and protein were not detectable in any xenograft, indicating a down-regulated expression of MMP-3 and TIMP-1 in vivo. TIMP-2 mRNA and protein were present in all xenografts; interestingly, the strongest immunoreactivity of tumour cells was found at the border of necrotic areas. Our study demonstrates that of all tested components of the matrix metalloproteinase system, only expression of activated MMP-2 correlates with increased malignancy in our melanoma xenograft model, corroborating an important role of MMP-2 in human melanoma invasion and metastasis. © 1999 Cancer Research Campaig

    Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajökull, Iceland

    Get PDF
    The 39-day long eruption at the summit of Eyjafjallajökull volcano in April–May 2010 was of modest size but ash was widely dispersed. By combining data from ground surveys and remote sensing we show that the erupted material was 4.8±1.2·1011 kg (benmoreite and trachyte, dense rock equivalent volume 0.18±0.05 km3). About 20% was lava and water-transported tephra, 80% was airborne tephra (bulk volume 0.27 km3) transported by 3–10 km high plumes. The airborne tephra was mostly fine ash (diameter <1000 ”m). At least 7·1010 kg (70 Tg) was very fine ash (<28 ”m), several times more than previously estimated via satellite retrievals. About 50% of the tephra fell in Iceland with the remainder carried towards south and east, detected over ~7 million km2 in Europe and the North Atlantic. Of order 1010 kg (2%) are considered to have been transported longer than 600–700 km with <108 kg (<0.02%) reaching mainland Europe

    Deletion of a Malaria Invasion Gene Reduces Death and Anemia, in Model Hosts

    Get PDF
    Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide range of mammalian hosts. Host genes and parasite ‘toxins’ have been implicated in malarial disease, but the contribution of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP) 7. MSP7 is not essential for infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei Δmsp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The Δmsp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    • 

    corecore