113 research outputs found

    Urodynamic Evaluation in Multiple System Atrophy: A Retrospective Cohort Study.

    Get PDF
    Background: Urological dysfunction in patients with multiple system atrophy (MSA) is one of the main manifestations of autonomic failure. Urodynamic examination is clinically relevant since underlying pathophysiology of lower urinary tract (LUT) dysfunction can be variable. Objective: Evaluation of the pathophysiology of urological symptoms and exploration of differences in urodynamic patterns of LUT dysfunction between MSA-P and MSA-C. Methods: Retrospective study of patients with possible and probable MSA who were referred for urodynamic studies between 2004 and 2019. Demographic data, medical history, physical examination and urodynamic studies assessing storage and voiding dysfunction were obtained. Results: Seventy-four patients were included in this study (MSA-P 64.9% n = 48; median age 62.5 (IQR 56.8-70) years). Detrusor overactivity during filling phase was noted in 58.1% (n = 43) of the patients. In the voiding phase, detrusor sphincter dyssynergia and detrusor underactivity were observed in 24.6% (n = 17) and in 62.1% (n = 41) of the patients, respectively. A postmicturition residual volume of over 100 ml was present in 71.4% (n = 50) of the patients. Comparison of MSA subtypes showed weaker detrusor contractility in MSA-P compared to MSA-C [pdetQmax 26.2 vs. 34.4 cmH20, P = 0.04]. In 56.2% (n = 41) of patients pathophysiology of LUT dysfunction was deemed to be neurogenic and consistent with the diagnosis of MSA. In 35.6% (n = 26) urodynamic pattern suggested other urological co-morbidities. Conclusion: Urodynamic evaluation is an important tool to analyze the pattern of LUT dysfunction in MSA. Impaired detrusor contractility was seen more in MSA-P which needs to be investigated in further studies

    Genetic and other factors determining mannose-binding lectin levels in American Indians: the Strong Heart Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mannose-binding lectin (MBL) forms an integral part of the innate immune system. Persistent, subclinical infections and chronic inflammatory states are hypothesized to contribute to the pathogenesis of atherosclerosis. MBL gene (<it>MBL2</it>) variants with between 12 to 25% allele frequency in Caucasian and other populations, result in markedly reduced expression of functional protein. Prospective epidemiologic studies, including a nested, case-control study from the present population, have demonstrated the ability of <it>MBL2 </it>genotypes to predict complications of atherosclerosis,. The genetic control of <it>MBL2 </it>expression is complex and genetic background effects in specific populations are largely unknown.</p> <p>Methods</p> <p>The Strong Heart Study is a longitudinal, cohort study of cardiovascular disease among American Indians. A subset of individuals genotyped for the above mentioned case-control study were selected for analysis of circulating MBL levels by double sandwich ELISA method. Mean MBL levels were compared between genotypic groups and multivariate regression was used to determine other independent factors influencing <it>MBL2 </it>expression.</p> <p>Results</p> <p>Our results confirm the effects of variant structural (B, C, and D) and promoter (H and Y) alleles that have been seen in other populations. In addition, MBL levels were found to be positively associated with male gender and hemoglobin A1c levels, but inversely related to triglyceride levels. Correlation was not found between MBL and other markers of inflammation.</p> <p>Conclusion</p> <p>New data is presented concerning the effects of known genetic variants on MBL levels in an American Indian population, as well as the relationship of <it>MBL2 </it>expression to clinical and environmental factors, including inflammatory markers.</p

    Vitamin D deficiency causes inward hypertrophic remodeling and alters vascular reactivity of rat cerebral arterioles

    Get PDF
    BACKGROUND AND PURPOSE: Vitamin D deficiency (VDD) is a global health problem, which can lead to several pathophysiological consequences including cardiovascular diseases. Its impact on the cerebrovascular system is not well understood. The goal of the present work was to examine the effects of VDD on the morphological, biomechanical and functional properties of cerebral arterioles. METHODS: Four-week-old male Wistar rats (n = 11 per group) were either fed with vitamin D deficient diet or received conventional rat chow with per os vitamin D supplementation. Cardiovascular parameters and hormone levels (testosterone, androstenedione, progesterone and 25-hydroxyvitamin D) were measured during the study. After 8 weeks of treatment anterior cerebral artery segments were prepared and their morphological, biomechanical and functional properties were examined using pressure microangiometry. Resorcin-fuchsin and smooth muscle actin staining were used to detect elastic fiber density and smooth muscle cell counts in the vessel wall, respectively. Sections were immunostained for eNOS and COX-2 as well. RESULTS: VDD markedly increased the wall thickness, the wall-to-lumen ratio and the wall cross-sectional area of arterioles as well as the number of smooth muscle cells in the tunica media. As a consequence, tangential wall stress was significantly lower in the VDD group. In addition, VDD increased the myogenic as well as the uridine 5'-triphosphate-induced tone and impaired bradykinin-induced relaxation. Decreased eNOS and increased COX-2 expression were also observed in the endothelium of VDD animals. CONCLUSIONS: VDD causes inward hypertrophic remodeling due to vascular smooth muscle cell proliferation and enhances the vessel tone probably because of increased vasoconstrictor prostanoid levels in young adult rats. In addition, the decreased eNOS expression results in endothelial dysfunction. These morphological and functional alterations can potentially compromise the cerebral circulation and lead to cerebrovascular disorders in VDD

    Natural products in drug discovery: advances and opportunities

    Get PDF
    Natural products and their structural analogues have historically made a major contribution to pharmacotherapy, especially for cancer and infectious diseases. Nevertheless, natural products also present challenges for drug discovery, such as technical barriers to screening, isolation, characterization and optimization, which contributed to a decline in their pursuit by the pharmaceutical industry from the 1990s onwards. In recent years, several technological and scientific developments — including improved analytical tools, genome mining and engineering strategies, and microbial culturing advances — are addressing such challenges and opening up new opportunities. Consequently, interest in natural products as drug leads is being revitalized, particularly for tackling antimicrobial resistance. Here, we summarize recent technological developments that are enabling natural product-based drug discovery, highlight selected applications and discuss key opportunities

    Gene Expression Profiles of Colonic Mucosa in Healthy Young Adult and Senior Dogs

    Get PDF
    Background: We have previously reported the effects of age and diet on nutrient digestibility, intestinal morphology, and large intestinal fermentation patterns in healthy young adult and senior dogs. However, a genome-wide molecular analysis of colonic mucosa as a function of age and diet has not yet been performed in dogs. Methodology/Principal Findings: Colonic mucosa samples were collected from six senior (12-year old) and six young adult (1-year old) female beagles fed one of two diets (animal protein-based vs. plant protein-based) for 12 months. Total RNA in colonic mucosa was extracted and hybridized to Affymetrix GeneChipH Canine Genome Arrays. Results indicated that the majority of gene expression changes were due to age (212 genes) rather than diet (66 genes). In particular, the colonic mucosa of senior dogs had increased expression of genes associated with cell proliferation, inflammation, stress response, and cellular metabolism, whereas the expression of genes associated with apoptosis and defensive mechanisms were decreased in senior vs. young adult dogs. No consistent diet-induced alterations in gene expression existed in both age groups, with the effects of diet being more pronounced in senior dogs than in young adult dogs. Conclusion: Our results provide molecular insight pertaining to the aged canine colon and its predisposition to dysfunction and disease. Therefore, our data may aid in future research pertaining to age-associated gastrointestinal physiologica

    The conundrum of iron in multiple sclerosis – time for an individualised approach

    Full text link

    Particle identification in ALICE : a Bayesian approach

    Get PDF
    Peer reviewe

    Urinary retention discriminates multiple system atrophy from Parkinson’s disease

    No full text
    Early onset of autonomic failure suggests multiple system atrophy (MSA) in patients with parkinsonism.1,2 However, autonomic failure also develops in Parkinson’s disease (PD),3 and it is unclear whether any autonomic feature remains peculiar of MSA throughout the disease course. Here we assessed which of the autonomic features included in the current MSA diagnostic criteria4 best differentiate MSA from PD at moderately advanced disease stages
    corecore