659 research outputs found
Numerical investigation of a galvanic structural joint subjected to a mechano- electrochemical loading
Here, we present for the first time, an experimentally validated numerical model for a galvanic couple subjected to a mechano-electrochemical process. The model is capable of tracking moving boundaries of the corroding constituent of the couple by employing Arbitrary Langrangian Eulerian (ALE) method. Results show that, when an anode is under a purely elastic deformation, there is no apparent effect of mechanical loading on the electrochemical galvanic process. However, when the applied tensile load is sufficient to cause a plastic deformation (local internal stress gradient), the local galvanic corrosion activity at the vicinity of the interface is increased remarkably. The effect of other factors, such as electrode area ratios, electrical conductivity of the electrolyte and depth of the electrolyte, are studied. It is observed that the conductivity of the electrolyte significantly influences the surface profile of the anode, especially near the junction
Combined Economic and Emission Dispatch Incorporating Renewable Energy Sources and Plug-In Hybrid Electric Vehicles
Conventional transportation and electricity industries are considered as two major sources of greenhouse gases (GHGs) emission. Improvement of vehicleâs operational efficiency can be a partial solution but it is necessary to employ Plug-In Hybrid Electric Vehicles (PHEVs) and Renewable Energy Sources (RESs) in the network to slow the increasing rate of the GHGs emission. However, it is crucial to investigate the effectiveness of each solution. In this paper, a combination of generation cost and GHGs emission of the two mentioned industries, as economic and environmental aspects of using PHEVs and RESs will be analyzed. The effectiveness of five different scenarios of utilizing the mentioned elements is studied on a test system. To have a realistic evaluation, an extended cost function model of wind farm is employed in optimal power dispatch calculations. Particle Swarm Optimization (PSO) algorithm is applied to the combined economic and emission dispatch (CEED) non- linear problem
Wide parameter search for isolated pulsars using the Hough transform
We use the Hough transform to analyze data from the second science run of the
LIGO interferometers, to look for gravitational waves from isolated pulsars. We
search over the whole sky and over a large range of frequencies and spin-down
parameters. Our search method is based on the Hough transform, which is a
semi-coherent, computationally efficient, and robust pattern recognition
technique. We also present a validation of the search pipeline using hardware
signal injections.Comment: Presented at GWDAW-9 in Annecy, France (Dec. 2004). 11 pages, 5
Figures. To appear in Classical and Quantum Gravit
Parametric Study of Strain Rate Effects on Nanoparticle-Reinforced Polymer Composites
Crashworthiness, energy absorption capacity, and safety are important factors in the design of lightweight vehicles made of fiber-reinforced polymer composite (FRP) components. The relatively recent emergence of the nanotechnology industry has presented a novel means to augment the mechanical properties of various materials. As a result, recent attempts have contemplated the use of nanoparticles to further improve the resiliency of resins, especially when resins are used for mating FRP components. Therefore, a comprehensive understanding of the response of nanoreinforced polymer composites, subjected to various rates of loading, is of paramount importance for developing reliable structures. In this paper, the effects of nanoreinforcement on the mechanical response of a commonly used epoxy resin subjected to four different strain rates, are systematically investigated. The results are then compared to those of the neat resin. To characterize the mechanical properties of the nanocomposite, a combination of the strain rate-dependent mechanical (SRDM) model of Goldberg and his coworkers and Halpin-Tsaiâs micromechanical approach is employed. Subsequently, a parametric study is conducted to ascertain the influences of particle type and their weight percentage. Finally, the numerical results are compared to the experimental data obtained from testing of the neat and the nanoreinforced epoxy resin
Retinal photoisomerization versus counterion protonation in light and dark-adapted bacteriorhodopsin and its primary photoproduct
Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as âKâ. We observe that following thermal double isomerization of retinal in the dark from bio-active all-trans 15-anti to 13-cis, 15-syn, photochemistry proceeds even faster than the ~0.5 ps decay of the former, exhibiting ballistic wave packet curve crossing to the ground state. In contrast, photoexcitation of K containing a 13-cis, 15-anti chromophore leads to markedly multi-exponential excited state decay including much slower stages. QM/MM calculations, aimed to interpret these results, highlight the crucial role of protonation, showing that the classic quadrupole counterion model poorly reproduces spectral data and dynamics. Single protonation of ASP212 rectifies discrepancies and predicts triple ground state structural heterogeneity aligning with experimental observations. These findings prompt a reevaluation of counter ion protonation in bacteriorhodopsin and contribute to the broader understanding of its photochemical dynamics
Iterative algorithms for total variation-like reconstructions in seismic tomography
A qualitative comparison of total variation like penalties (total variation,
Huber variant of total variation, total generalized variation, ...) is made in
the context of global seismic tomography. Both penalized and constrained
formulations of seismic recovery problems are treated. A number of simple
iterative recovery algorithms applicable to these problems are described. The
convergence speed of these algorithms is compared numerically in this setting.
For the constrained formulation a new algorithm is proposed and its convergence
is proven.Comment: 28 pages, 8 figures. Corrected sign errors in formula (25
Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics
We investigate the Bayesian framework for detection of continuous
gravitational waves (GWs) in the context of targeted searches, where the phase
evolution of the GW signal is assumed to be known, while the four amplitude
parameters are unknown. We show that the orthodox maximum-likelihood statistic
(known as F-statistic) can be rediscovered as a Bayes factor with an unphysical
prior in amplitude parameter space. We introduce an alternative detection
statistic ("B-statistic") using the Bayes factor with a more natural amplitude
prior, namely an isotropic probability distribution for the orientation of GW
sources. Monte-Carlo simulations of targeted searches show that the resulting
Bayesian B-statistic is more powerful in the Neyman-Pearson sense (i.e. has a
higher expected detection probability at equal false-alarm probability) than
the frequentist F-statistic.Comment: 12 pages, presented at GWDAW13, to appear in CQ
Cloud migration patterns: a multi-cloud service architecture perspective
Many organizations migrate their on-premise software systems to the cloud. However, current coarse-grained cloud migration solutions have made a transparent migration of on-premise applications to the cloud a difficult, sometimes trial-and-error based endeavor. This paper suggests a catalogue of fine-grained service-based cloud architecture migration patterns that target multi-cloud settings and are specified with architectural notations. The proposed migration patterns are based on empirical evi-dence from a number of migration projects, best practices for cloud architectures and a systematic literature review of existing research. The pattern catalogue allows an or-ganization to (1) select appropriate architecture migration patterns based on their ob-jectives, (2) compose them to define a migration plan, and (3) extend them based on the identification of new patterns in new contexts
- âŠ