35 research outputs found

    Formation of stellar inner discs and rings in spiral galaxies through minor mergers

    Get PDF
    Recent observations show that inner disks and rings (IDs and IRs) are not preferentially found in barred galaxies, pointing to the relevance of formation mechanisms different to the traditional bar-origin scenario. Nevertheless, the role of minor mergers in the formation of these inner components (ICs), while often invoked, is still poorly understood. We have investigated the capability of minor mergers to trigger the formation of IDs and IRs in spiral galaxies through collisionless N-body simulations. Our models prove that minor mergers are an efficient mechanism to form rotationally-supported stellar ICs in spirals, neither requiring strong dissipation nor noticeable bars, and suggest that their role in the formation of ICs must have been much more complex than just bar triggering

    The impact from survey depth and resolution on the morphological classification of galaxies

    Get PDF
    We consistently analyse for the first time the impact of survey depth and spatial resolution on the most used morphological parameters for classifying galaxies through non-parametric methods: Abraham and Conselice-Bershady concentration indices, Gini, M20moment of light, asymmetry, and smoothness. Three different non-local data sets are used, Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) and Subaru/XMMNewton Deep Survey (SXDS, examples of deep ground-based surveys), and Cosmos Evolution Survey (COSMOS, deep space-based survey). We used a sample of 3000 local, visually classified galaxies, measuring their morphological parameters at their real redshifts (z ~ 0). Then we simulated them to match the redshift and magnitude distributions of galaxies in the non-local surveys. The comparisons of the two sets allow us to put constraints on the use of each parameter for morphological classification and evaluate the effectiveness of the commonly used morphological diagnostic diagrams. All analysed parameters suffer from biases related to spatial resolution and depth, the impact of the former being much stronger. When including asymmetry and smoothness in classification diagrams, the noise effects must be taken into account carefully, especially for ground-based surveys. M20 is significantly affected, changing both the shape and range of its distribution at all brightness levels. We suggest that diagnostic diagrams based on 2-3 parameters should be avoided when classifying galaxies in ground-based surveys, independently of their brightness; for COSMOS they should be avoided for galaxies fainter than F814 = 23.0. These results can be applied directly to surveys similar to ALHAMBRA, SXDS and COSMOS, and also can serve as an upper/lower limit for shallower/deeper ones.MP acknowledge financial support from JAE-Doc programme of the Spanish National Research Council (CSIC), co-funded by the European Social Fund. This research was supported by the Junta de Andalucia through project TIC114, and the Spanish Ministry of Economy and Competitiveness (MINECO) through projects AYA2010-15169, AYA2013-42227-P, and AYA2013-43188-P.Peer Reviewe

    I. MUFFIT: A multi-filter fitting code for stellar population diagnostics

    Get PDF
    Numerical methods and codes.-- et al.[Aims]: We present MUFFIT, a new generic code optimized to retrieve the main stellar population parameters of galaxies in photometric multi-filter surveys, and check its reliability and feasibility with real galaxy data from the ALHAMBRA survey. [Methods]: Making use of an error-weighted X2-test, we compare the multi-filter fluxes of galaxies with the synthetic photometry of mixtures of two single stellar populations at different redshifts and extinctions, to provide the most likely range of stellar population parameters (mainly ages and metallicities), extinctions, redshifts, and stellar masses. To improve the diagnostic reliability, MUFFIT identifies and removes from the analysis those bands that are significantly affected by emission lines. The final parameters and their uncertainties are derived by a Monte Carlo method, using the individual photometric uncertainties in each band. Finally, we discuss the accuracies, degeneracies, and reliability of MUFFIT using both simulated and real galaxies from ALHAMBRA, comparing with results from the literature. [Results]: MUFFIT is a precise and reliable code to derive stellar population parameters of galaxies in ALHAMBRA. Using the results from photometric-redshift codes as input, MUFFIT improves the photometric-redshift accuracy by ∼10-20%. MUFFIT also detects nebular emissions in galaxies, providing physical information about their strengths. The stellar masses derived from MUFFIT show excellent agreement with the COSMOS and SDSS values. In addition, the retrieved age-metallicity locus for a sample of z ≤ 0.22 early-type galaxies in ALHAMBRA at different stellar mass bins are in very good agreement with the ones from SDSS spectroscopic diagnostics. Moreover, a one-to-one comparison between the redshifts, ages, metallicities, and stellar masses derived spectroscopically for SDSS and by MUFFIT for ALHAMBRA reveals good qualitative agreements in all the parameters, hence reinforcing the strengths of multi-filter galaxy data and optimized analysis techniques, like MUFFIT, to conduct reliable stellar population studies.L.A.D.G. acknowledges support from the "Caja Rural de Teruel" for developing this research. A.J.C. is a Ramon y Cajal Fellow of the Spanish Ministry of Science and Innovation. This work has been supported by the "Programa Nacional de Astronomia y Astrofisica" of the Spanish Ministry of Economy and Competitiveness (MINECO) under grant AYA2012-30789, as well as by FEDER funds and the Government of Aragon, through the Research Group E103. L.A.D.G. also thanks the Mullard Space Science Laboratory (MSSL) and Royal Astronomical Society (RAS) for offering the opportunity to support and develop part of this research in collaboration with I.F. MINECO grants AYA2010-15081, AYA2010-15169, AYA2010-22111-C03-01, AYA2010-22111-C03-02, AYA2011-29517-C03-01, AYA2013-40611-P, AYA2013-42227-P, AYA2013-43188-P, AYA2013-48623-C2-1, AYA2013-48623-C2-2, and AYA2014-58861-C3-1 are also acknowledged, together with Generalitat Valenciana projects Prometeo 2009/064 and PROMETEOII/2014/060, and Junta de Andalucia grants TIC114, JA2828, and P10-FQM-6444. MP acknowledges financial support from the JAE-Doc programme of the Spanish National Research Council (CSIC), co-funded by the European Social Fund.Peer Reviewe

    The ALHAMBRA survey: accurate merger fractions derived by PDF analysis of photometrically close pairs

    Get PDF
    [Aims]: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. [Methods]: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections.We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. [Results]: The merger fractions and rates from the ALHAMBRA survey agree excellently well with those from spectroscopic work for both the general population and red and blue galaxies. With the merger rate of bright (MB ≤ -20 - 1:1z) galaxies evolving as (1 + z)n, the power-law index n is higher for blue galaxies (n = 2:7 0:5) than for red galaxies (n = 1:3 0:4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is Nm red = 0:57 0:05 for red galaxies and Nm blue = 0:26 0:02 for blue galaxies. [Conclusions]: Our new methodology statistically exploits all the available information provided by photometric redshift codes and yields accurate measurements of the merger fraction by close pairs from using photometric redshifts alone. Current and future photometric surveys will benefit from this new methodology.This work has been mainly funded by the FITE (Fondos de Inversiones de Teruel) and the projects AYA2012-30789, AYA2006-14056, and CSD2007-00060. We also acknowledge financial support from the Spanish Government grants AYA2010-15169, AYA2010-22111-C03-01, AYA2010-22111-C03-02, and AYA2013-48623-C2-2, from the Aragón Government through the Research Group E103, from the Junta de Andalucía through TIC-114 and the Excellence Project P08-TIC-03531, and from the Generalitat Valenciana through the projects Prometeo/2009/064 and PrometeoII/2014/060. A.J.C. is Ramón y Cajal fellow of the Spanish government. M.P. acknowledges the financial support from JAE-Doc program of the Spanish National Research Council (CSIC), co-funded by the European Social Fund.Peer Reviewe

    The ALHAMBRA survey: Estimation of the clustering signal encoded in the cosmic variance

    Get PDF
    [Aims]: The relative cosmic variance (σv) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv measured in the ALHAMBRA survey. [Methods]: We measure the cosmic variance of several galaxy populations selected with B-band luminosity at 0.35 ≤ z< 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv with the cosmic variance of the dark matter expected from the theory, σv,dm. This provides an estimation of the galaxy bias b. [Results]: The galaxy bias from the cosmic variance is in excellent agreement with the bias estimated by two-point correlation function analysis in ALHAMBRA. This holds for different redshift bins, for red and blue subsamples, and for several B-band luminosity selections. We find that b increases with the B-band luminosity and the redshift, as expected from previous work. Moreover, red galaxies have a larger bias than blue galaxies, with a relative bias of brel = 1.4 ± 0.2. [Conclusions]: Our results demonstrate that the cosmic variance measured in ALHAMBRA is due to the clustering of galaxies and can be used to characterise the σv affecting pencil-beam surveys. In addition, it can also be used to estimate the galaxy bias b from a method independent of correlation functions.This work has been mainly funded by the FITE (Fondos de Inversiones de Teruel) and the projects AYA2012-30789, AYA2006-14056, and CSD2007-00060. We also acknowledge support from the Spanish Ministry for Economy and Competitiveness and FEDER funds through grants AYA2010-15081, AYA2010-15169, AYA2010-22111-C03-01, AYA2010-22111-C03-02, AYA2011-29517-C03-01, AYA2012-39620, AYA2013-40611-P, AYA2013-42227-P, AYA2013-43188-P, AYA2013-48623-C2-1, AYA2013-48623-C2-2, ESP2013-48274, AYA2014-58861-C3-1, Aragon Government Research Group E103, Generalitat Valenciana projects Prometeo 2009/064 and PROMETEOII/2014/060, Junta de Andalucia grants TIC114, JA2828, P10-FQM-6444, and Generalitat de Catalunya project SGR-1398. A.J.C. and C.H.-M. are Ramon y Cajal fellows of the Spanish government. A. M. acknowledges the financial support of the Brazilian funding agency FAPESP (Post-doc fellowship - process number 2014/11806-9). M.P. acknowledges financial support from JAE-Doc program of the Spanish National Research Council (CSIC), co-funded by the European Social Fund.Peer Reviewe

    The ALHAMBRA survey: reliable morphological catalogue of 22 051 early- and late-type galaxies

    Get PDF
    Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) is photometric survey designed to trace the cosmic evolution and cosmic variance. It covers a large area of ~4 deg2 in eight fields, where seven fields overlap with other surveys, allowing us to have complementary data in other wavelengths. All observations were carried out in 20 continuous, medium band (30 nm width) optical and 3 near-infrared (JHK) bands, providing the precise measurements of photometric redshifts. In addition, morphological classification of galaxies is crucial for any kind of galaxy formation and cosmic evolution studies, providing the information about star formation histories, their environment and interactions, internal perturbations, etc. We present a morphological classification of >40 000 galaxies in the ALHAMBRA survey. We associate to every galaxy a probability to be early type using the automated Bayesian code GALSVM. Despite of the spatial resolution of theALHAMBRAimages (~1 arcsec), for 22 051 galaxies, we obtained the contamination by other type of less than 10 per cent. Of those, 1640 and 10 322 galaxies are classified as early-(down to redshifts ~0.5) and late-type (down to redshifts ~1.0), respectively, with magnitudes F613W ≤ 22.0. In addition, for magnitude range 22.0 < F613W ≤ 23.0, we classified other 10 089 late-type galaxies with redshifts ≤1.3.We show that the classified objects populate the expected regions in the colour-mass and colour-magnitude planes. The presented data set is especially attractive given the homogeneous multiwavelength coverage available in the ALHAMBRA fields, and is intended to be used in a variety of scientific applications. The low-contamination catalogue (<10 per cent) is made publicly available with this paper. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.This research was supported by the Junta de Andalucía through projects PO8-TIC-03531 and TIC114, the Spanish Ministry of Economy and Competitiveness (MINECO) through projects AYA2006-14046, AYA2010-15169, AYA2010-22111-C03-02, AYA2011-29517-C03-01, and the Generalitat Valenciana through project GV/Prometeo 2009/064. MP acknowledges financial support from JAE-Doc program of the Spanish National Research Council (CSIC), co-funded by the European Social Fund.Peer Reviewe

    The CALIFA survey across the Hubble sequence: Spatially resolved stellar population properties in galaxies

    Get PDF
    © ESO, 2015. Various different physical processes contribute to the star formation and stellar mass assembly histories of galaxies. One important approach to understanding the significance of these different processes on galaxy evolution is the study of the stellar population content of today's galaxies in a spatially resolved manner. The aim of this paper is to characterize in detail the radial structure of stellar population properties of galaxies in the nearby universe, based on a uniquely large galaxy sample, considering the quality and coverage of the data. The sample under study was drawn from the CALIFA survey and contains 300 galaxies observed with integral field spectroscopy. These cover a wide range of Hubble types, from spheroids to spiral galaxies, while stellar masses range from MBlack star ∼ 109 to 7 × 1011 M⊙. We apply the fossil record method based on spectral synthesis techniques to recover the following physical properties for each spatial resolution element in our target galaxies: the stellar mass surface density (μBlack star), stellar extinction (AV), light-weighted and mass-weighted ages ('log age'L, 'log age'M), and mass-weighted metallicity ('log ZBlack star'M). To study mean trends with overall galaxy properties, the individual radial profiles are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd). We confirm that more massive galaxies are more compact, older, more metal rich, and less reddened by dust. Additionally, we find that these trends are preserved spatially with the radial distance to the nucleus. Deviations from these relations appear correlated with Hubble type: earlier types are more compact, older, and more metal rich for a given MBlack star, which is evidence that quenching is related to morphology, but not driven by mass. Negative gradients of 'log age'L are consistent with an inside-out growth of galaxies, with the largest 'log age'L gradients in Sb-Sbc galaxies. Further, the mean stellar ages of disks and bulges are correlated and with disks covering a wider range of ages, and late-type spirals hosting younger disks. However, age gradients are only mildly negative or flat beyond R ∼ 2 HLR (half light radius), indicating that star formation is more uniformly distributed or that stellar migration is important at these distances. The gradients in stellar mass surface density depend mostly on stellar mass, in the sense that more massive galaxies are more centrally concentrated. Whatever sets the concentration indices of galaxies obviously depends less on quenching/morphology than on the depth of the potential well. There is a secondary correlation in the sense that at the same MBlack star early-type galaxies have steeper gradients. The μBlack star gradients outside 1 HLR show no dependence on Hubble type. We find mildly negative 'log ZBlack star'M gradients, which are shallower than predicted from models of galaxy evolution in isolation. In general, metallicity gradients depend on stellar mass, and less on morphology, hinting that metallicity is affected by both - the depth of the potential well and morphology/quenching.Support from the Spanish Ministerio de Economia y Competitividad, through projects AYA2010-15081 (PI R.G.D.), and Junta de Andalucia FQ1580 (PI R.G.D.), AYA2010-22111-C03-03, and AYA2010-10904E (S.F.S.). We also thank the Viabilidad, Diseno, Acceso y Mejora funding program, ICTS-2009-10, for funding the data acquisition of this project. R.C.F. thanks the hospitality of the IAA and the support of CAPES and CNPq. R.G.D. acknowledges the support of CNPq (Brazil) through Programa Ciencia sem Fronteiras (401452/2012-3). A.G. acknowledges support from EU FP7/2007-2013 under grant agreement n.267251 (AstroFIt) and from the EU Marie Curie Integration Grant >SteMaGE> Nr. PCIG12-GA-2012-326466. C.J.W. acknowledges support through the Marie Curie Career Integration Grant 303912. E.P. acknowledges support from the Guillermo Haro program at INAOE. Support for L.G. is provided by the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS. L.G. acknowledges support by CONICYT through FONDECYT grant 3140566. J.I.P. acknowledges financial support from the Spanish MINECO under grant AYA2010-21887-C04-01 and from Junta de Andalucia Excellence Project PEX2011-FQM7058. I.M., J.M. and A.d.O. acknowledge support from the project AYA2013-42227-P. RAM is funded by the Spanish program of International Campus of Excellence Moncloa (CEI). J.M. A. acknowledges support from the European Research Council Starting Grant (SEDmorph; P.I. V. Wild).Peer Reviewe

    J/psi production as a function of charged-particle pseudorapidity density in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity

    On the origin of dwarf elliptical galaxies: the fundamental plane

    Get PDF
    [EN]Context. Early-type dwarf (dE) galaxies are the most common type of galaxies observed in the Universe. Their study has important cosmological implications because according to hierarchical galaxy evolution theories they are the progenitors of brighter galaxies. Nevertheless, the origin of this kind of system is still not well understood. Aims. The aim of the present work is to investigate whether the different locations of dwarf galaxies with respect to ellipticals in the face-on view of the fundamental plane could be due to the transformation of bright disc galaxies in low-mass systems by harassment. Methods. We have run high-resolution N-body numerical simulations to test the tidal stripping scenario of dE galaxies. The present simulations modelled several individual tidal stripping events in initial disc-like galaxy models with different bulge-to-disc mass ratios. Results. The models have shown that tidal stripping is a very efficient mechanism for removing stars and dark matter particles from galaxies, specially from their outer parts. The particles of the disc and halo components were easily stripped, while the bulge particles were not. Thus, the scale length of the discs were 40−50% shorter than the initial ones. Prograde tidal interactions create tidal features like stable bars in the discs of the galaxies. In contrast, bars are inhibited in retrograde encounters. After several tidal interactions the galaxy remnants looks like a dwarf spheroidal system. The final position of the low-mass systems in the face-on view of the fundamental plane (FP) depends on the initial conditions of the simulations. Thus, simulated galaxies with initial large B/D ratios are closer to the face-on view of the fundamental plane defined by bright E and bulges of early-type galaxies. Nevertheless, galaxies with initially small B/D ratio are located, after four fast tidal encounters, at the position of dE galaxies in the face-on view of the fundamental plane.The final position of the remnants in the FP do not depend on the orbital configuration of the encounters. Conclusions. We conclude that fast galaxy-galaxy interactions are efficient mechanisms of transforming bright galaxies into dwarf ones. Indeed, the different location observed between Es and dEs in the face-on view of the fundamental plane can be explained by the formation of dwarf galaxies by harassment of late-type bright ones.Peer reviewe
    corecore