10 research outputs found

    Demonstration of a novel technique to measure two-photon exchange effects in elastic e±pe^\pm p scattering

    Full text link
    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct e±pe^\pm p comparisons, which has the potential to make precise measurements over a broad range in Q2Q^2 and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2Q^2 and scattering angle. Nonetheless, this measurement yields a data sample for e±pe^\pm p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: R=1.027±0.005±0.05R=1.027\pm0.005\pm0.05 for =0.206=0.206 GeV2^2 and 0.830≀ϔ≀0.9430.830\leq \epsilon\leq 0.943

    Strangeness Suppression of q(q)over-bar Creation Observed in Exclusive Reactions

    Get PDF
    We measured the ratios of electroproduction cross-sections from a proton target for three exclusive meson-baryon final states: ΛK+\Lambda K^+, pπ0p\pi^0, and nπ+n\pi^+, with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization we extract q-qbar creation probabilities for the first time in exclusive two-body production, in which only a single q-qbar pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to non-strange pairs, similar to that seen in high-energy production.Comment: 5pages, 2figure

    Semi-inclusive pi(0) target and beam-target asymmetries from 6 GeV electron scattering with CLAS

    Get PDF
    We present precision measurements of the target and beam-target spin asymmetries from neutral pion electroproduction in deep-inelastic scattering (DIS) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. We scattered 6-GeV, longitudinally polarized electrons off longitudinally polarized protons in a cryogenic 14^{14}NH3_3 target, and extracted double and single target spin asymmetries for ep→eâ€Čπ0Xep\rightarrow e^\prime\pi^0X in multidimensional bins in four-momentum transfer (1.0<Q2<3.21.0<Q^2<3.2 GeV2^2), Bjorken-xx (0.12<x<0.480.12<x<0.48), hadron energy fraction (0.4<z<0.70.4<z<0.7), transverse pion momentum (0<PT<1.00<P_T<1.0 GeV), and azimuthal angle ϕh\phi_h between the lepton scattering and hadron production planes. We extracted asymmetries as a function of both xx and PTP_T, which provide access to transverse-momentum distributions of longitudinally polarized quarks. The double spin asymmetries depend weakly on PTP_T. The sin⁥2ϕh\sin 2\phi_h moments are zero within uncertainties, which is consistent with the expected suppression of the Collins fragmentation function. The observed sinâĄÏ•h\sin\phi_h moments suggest that quark gluon correlations are significant at large xx.Comment: 18 preprint pages, 3 figure

    In situ agrobiodiversity conservation for regional development in Nepal

    No full text
    © Springer 2005The majority of rural communities have limited agricultural development opportunities within the hills and mountains of Nepal. While the dominant development model, which focuses on technology transfer and the evolution of commercial production systems, is effective when access to inputs and markets enables farmers to produce and trade successfully, many communities are marginalised from development opportunities by poverty and poor infrastructure. Complementary development approaches that value, conserve, develop and market agrobiodiversity could alleviate the extreme poverty where these conditions prevail as in the hills and mountains, the rural margins of Nepal. Formalised in situ approaches to agrobiodiversity conservation are in their infancy in Nepal, yet suggest that opportunities exist for a complementary agricultural development approach in the rural margins based on working with the local diversity, rather than its elimination. The obstacles of widespread poverty and inadequate infrastructure ensure that effective in situ agrobiodiversity conservation programs must provide for the needs of local people for sustainable development.Douglas Bardsley and Ian Thoma

    First observation of the Λ(1405) line shape in electroproduction

    No full text
    We report the first observation of the line shape of the Λ(1405) from electroproduction, and show that it is not a simple Breit-Wigner resonance. Electroproduction of K+Λ(1405) off the proton was studied by using data from CLAS at Jefferson Lab in the range 1.0&#60;Q2&#60;3.0 (GeV/c)2. The analysis utilized the decay channels ÎŁ+π− of the Λ(1405) and pπ0 of the ÎŁ+. Neither the standard Particle Data Group resonance parameters, nor free parameters fitting to a single Breit-Wigner resonance represent the line shape. In our fits, the line shape corresponds approximately to predictions of a two-pole meson-baryon picture of the Λ(1405), with a lower mass pole near 1368 MeV/c2 and a higher mass pole near 1423 MeV/c2. Furthermore, with increasing photon virtuality the mass distribution shifts toward the higher mass pole

    Measurement of transparency ratios for protons from short-range correlated pairs

    No full text
    Nuclear transparency, Tp(A), is a measure of the average probability for a struck proton to escape the nucleus without significant re-interaction. Previously, nuclear transparencies were extracted for quasi-elasticA(e,eâ€Čp) knockout of protons with momentum below the Fermi momentum, where the spectral functions are well known. In this Letter we extract a novel observable, the transparency ratio, Tp(A)/Tp(&lt;sup&gt;12&lt;/sup&gt;C), for knockout of high-missing-momentum protons from the breakup of short-range correlated pairs (2N-SRC) in Al, Fe and Pb nuclei relative to C. The ratios were measured at momentum transfer andxBâ©Ÿ1.2 where the reaction is expected to be dominated by electron scattering from 2N-SRC. The transparency ratios of the knocked-out protons coming from 2N-SRC breakup are 20–30% lower than those of previous results for low missing momentum. They agree with Glauber calculations and agree with renormalization of the previously published transparencies as proposed by recent theoretical investigations. The new transparencies scale as A&lt;sup&gt;−1/3&lt;/sup&gt;, which is consistent with dominance of scattering from nucleons at the nuclear surface

    Measurement of transparency ratios for protons from short-range correlated pairs

    No full text

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore