1,258 research outputs found

    Cloud Chaser: Real Time Deep Learning Computer Vision on Low Computing Power Devices

    Full text link
    Internet of Things(IoT) devices, mobile phones, and robotic systems are often denied the power of deep learning algorithms due to their limited computing power. However, to provide time-critical services such as emergency response, home assistance, surveillance, etc, these devices often need real-time analysis of their camera data. This paper strives to offer a viable approach to integrate high-performance deep learning-based computer vision algorithms with low-resource and low-power devices by leveraging the computing power of the cloud. By offloading the computation work to the cloud, no dedicated hardware is needed to enable deep neural networks on existing low computing power devices. A Raspberry Pi based robot, Cloud Chaser, is built to demonstrate the power of using cloud computing to perform real-time vision tasks. Furthermore, to reduce latency and improve real-time performance, compression algorithms are proposed and evaluated for streaming real-time video frames to the cloud.Comment: Accepted to The 11th International Conference on Machine Vision (ICMV 2018). Project site: https://zhengyiluo.github.io/projects/cloudchaser

    Feature-Fused SSD: Fast Detection for Small Objects

    Full text link
    Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCALVOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some smallobjects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS. Code is available at https://github.com/wnzhyee/Feature-Fused-SSD. Keywords: small object detection, feature fusion, real-time, single shot multi-box detectorComment: Artificial Intelligence;8 pages,8 figure

    Contextual Action Recognition with R*CNN

    Full text link
    There are multiple cues in an image which reveal what action a person is performing. For example, a jogger has a pose that is characteristic for jogging, but the scene (e.g. road, trail) and the presence of other joggers can be an additional source of information. In this work, we exploit the simple observation that actions are accompanied by contextual cues to build a strong action recognition system. We adapt RCNN to use more than one region for classification while still maintaining the ability to localize the action. We call our system R*CNN. The action-specific models and the feature maps are trained jointly, allowing for action specific representations to emerge. R*CNN achieves 90.2% mean AP on the PASAL VOC Action dataset, outperforming all other approaches in the field by a significant margin. Last, we show that R*CNN is not limited to action recognition. In particular, R*CNN can also be used to tackle fine-grained tasks such as attribute classification. We validate this claim by reporting state-of-the-art performance on the Berkeley Attributes of People dataset

    Non-local Neural Networks

    Full text link
    Both convolutional and recurrent operations are building blocks that process one local neighborhood at a time. In this paper, we present non-local operations as a generic family of building blocks for capturing long-range dependencies. Inspired by the classical non-local means method in computer vision, our non-local operation computes the response at a position as a weighted sum of the features at all positions. This building block can be plugged into many computer vision architectures. On the task of video classification, even without any bells and whistles, our non-local models can compete or outperform current competition winners on both Kinetics and Charades datasets. In static image recognition, our non-local models improve object detection/segmentation and pose estimation on the COCO suite of tasks. Code is available at https://github.com/facebookresearch/video-nonlocal-net .Comment: CVPR 2018, code is available at: https://github.com/facebookresearch/video-nonlocal-ne
    • …
    corecore