649 research outputs found

    Dynamic effects of electromagnetic wave on a damped two-level atom

    Get PDF
    We studied the dynamic effects of an electromagnetic(EM) wave with circular polarization on a two-level damped atom. The results demonstrate interesting ac Stark split of energy levels of damped atom. The split levels have different energies and lifetimes, both of which depend on the interaction and the damping rate of atom. When the frequency of the EM wave is tuned to satisfy the resonance condition in the strong coupling limit, the transition probability exhibits Rabi oscillation. Momentum transfer between atom and EM wave shows similar properties as the transition probability under resonance condition. For a damped atom interacting with EM field, there exists no longer stable state. More importantly, if the angular frequency of the EM wave is tuned the same as the atomic transition frequency and its amplitude is adjusted appropriately according to the damping coefficients, we can prepare a particular 'Dressed State' of the coupled system between atom and EM field and can keep the system coherently in this 'Dressed state' for a very long time. This opens another way to prepare coherent atomic states.Comment: latex, 2 figure

    Localization dynamics in a binary two-dimensional cellular automaton: the Diffusion Rule

    Get PDF
    We study a two-dimensional cellular automaton (CA), called Diffusion Rule (DR), which exhibits diffusion-like dynamics of propagating patterns. In computational experiments we discover a wide range of mobile and stationary localizations (gliders, oscillators, glider guns, puffer trains, etc), analyze spatio-temporal dynamics of collisions between localizations, and discuss possible applications in unconventional computing.Comment: Accepted to Journal of Cellular Automat

    A pre-post study of behavioural determinants and practice change in Ugandan clinical officers

    Get PDF
    Background. Understanding the drivers of ‘provider behaviour’ has been highlighted as one of the six domains of behaviour change in strengthening healthcare systems.Objectives. To assess changes in healthcare provider behaviour, i.e. use of the Airway, Breathing, Circulation, Disability, Exposure (ABCDE) approach in acute illness management, after participating in a 1-day course on the assessment and management of acutely ill patients. We aimed to assess whether changes in psychological determinants of the ABCDE approach were associated with changes in the use of the approach.Methods. We used a pre-post design to study self-reported change in behaviour after a 1-day training course from pre-course to follow-up 1 month later. We also measured psychological determinants of behaviour immediately before and after and at 1-month follow-up. We explored if changes in psychological determinants were associated with change in practice 1 month later.Results. We found the following: firstly, use of the ABCDE approach increased at 1 month post-course from a median use of 50 - 90%. Secondly, the increase in the ABCDE approach was associated with a positive change in only one of the determinants of practice from pre- to post-course: perception of environmental determinants (r=0.323; p<0.05). Finally, there were no other significant associations with practice change or practice at follow-up.Conclusions. Change in perceptions of availability of resources was associated with increased use of an ABCDE approach, but evidence was limited owing to the pre-post design

    A Behavioural Foundation for Natural Computing and a Programmability Test

    Full text link
    What does it mean to claim that a physical or natural system computes? One answer, endorsed here, is that computing is about programming a system to behave in different ways. This paper offers an account of what it means for a physical system to compute based on this notion. It proposes a behavioural characterisation of computing in terms of a measure of programmability, which reflects a system's ability to react to external stimuli. The proposed measure of programmability is useful for classifying computers in terms of the apparent algorithmic complexity of their evolution in time. I make some specific proposals in this connection and discuss this approach in the context of other behavioural approaches, notably Turing's test of machine intelligence. I also anticipate possible objections and consider the applicability of these proposals to the task of relating abstract computation to nature-like computation.Comment: 37 pages, 4 figures. Based on an invited Talk at the Symposium on Natural/Unconventional Computing and its Philosophical Significance, Alan Turing World Congress 2012, Birmingham, UK. http://link.springer.com/article/10.1007/s13347-012-0095-2 Ref. glitch fixed in 2nd. version; Philosophy & Technology (special issue on History and Philosophy of Computing), Springer, 201

    A framework for the local information dynamics of distributed computation in complex systems

    Full text link
    The nature of distributed computation has often been described in terms of the component operations of universal computation: information storage, transfer and modification. We review the first complete framework that quantifies each of these individual information dynamics on a local scale within a system, and describes the manner in which they interact to create non-trivial computation where "the whole is greater than the sum of the parts". We describe the application of the framework to cellular automata, a simple yet powerful model of distributed computation. This is an important application, because the framework is the first to provide quantitative evidence for several important conjectures about distributed computation in cellular automata: that blinkers embody information storage, particles are information transfer agents, and particle collisions are information modification events. The framework is also shown to contrast the computations conducted by several well-known cellular automata, highlighting the importance of information coherence in complex computation. The results reviewed here provide important quantitative insights into the fundamental nature of distributed computation and the dynamics of complex systems, as well as impetus for the framework to be applied to the analysis and design of other systems.Comment: 44 pages, 8 figure

    An intense narrow equatorial jet in Jupiter’s lower stratosphere observed by JWST

    Get PDF
    The atmosphere of Jupiter has east–west zonal jets that alternate as a function of latitude as tracked by cloud motions at tropospheric levels. Above and below the cold tropopause at ~100 mbar, the equatorial atmosphere is covered by hazes at levels where thermal infrared observations used to characterize the dynamics of the stratosphere lose part of their sensitivity. James Webb Space Telescope observations of Jupiter in July 2022 show these hazes in higher detail than ever before and reveal the presence of an intense (140 m s−1) equatorial jet at 100–200 mbar (70 m s−1 faster than the zonal winds at the cloud level) that is confined to ±3° of the equator and is located below stratospheric thermal oscillations that extend at least from 0.1 to 40 mbar and repeat in multiyear cycles. This suggests that the new jet is a deep part of Jupiter’s Equatorial Stratospheric Oscillation and may therefore vary in strength over time.JWST-ERS-01373, NASA/ESA Hubble Space Telescope programmes no. 16913, 15502 and 16790, PID2019-109467GB-I00 funded by MCIN/AEI/10.13039/501100011033/, Grupos Gobierno Vasco IT1742-22. I.d.; European Research Council Consolidator Grant (under the European Union’s Horizon 2020 research and innovation programme, grant agreement no. 723890), STFC PhD Studentship, NASA grants 80NSSC21K1418 and 80NSSC19K0894

    First upper limits from LIGO on gravitational wave bursts

    Get PDF
    We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h_{rss}; typical sensitivities lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos and updated a few reference

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date
    • 

    corecore