778 research outputs found
Dynamic effects of electromagnetic wave on a damped two-level atom
We studied the dynamic effects of an electromagnetic(EM) wave with circular
polarization on a two-level damped atom. The results demonstrate interesting ac
Stark split of energy levels of damped atom. The split levels have different
energies and lifetimes, both of which depend on the interaction and the damping
rate of atom. When the frequency of the EM wave is tuned to satisfy the
resonance condition in the strong coupling limit, the transition probability
exhibits Rabi oscillation. Momentum transfer between atom and EM wave shows
similar properties as the transition probability under resonance condition. For
a damped atom interacting with EM field, there exists no longer stable state.
More importantly, if the angular frequency of the EM wave is tuned the same as
the atomic transition frequency and its amplitude is adjusted appropriately
according to the damping coefficients, we can prepare a particular 'Dressed
State' of the coupled system between atom and EM field and can keep the system
coherently in this 'Dressed state' for a very long time. This opens another way
to prepare coherent atomic states.Comment: latex, 2 figure
Localization dynamics in a binary two-dimensional cellular automaton: the Diffusion Rule
We study a two-dimensional cellular automaton (CA), called Diffusion Rule
(DR), which exhibits diffusion-like dynamics of propagating patterns. In
computational experiments we discover a wide range of mobile and stationary
localizations (gliders, oscillators, glider guns, puffer trains, etc), analyze
spatio-temporal dynamics of collisions between localizations, and discuss
possible applications in unconventional computing.Comment: Accepted to Journal of Cellular Automat
Relativistic Models for Binary Neutron Stars with Arbitrary Spins
We introduce a new numerical scheme for solving the initial value problem for
quasiequilibrium binary neutron stars allowing for arbitrary spins. The coupled
Einstein field equations and equations of relativistic hydrodynamics are solved
in the Wilson-Mathews conformal thin sandwich formalism. We construct sequences
of circular-orbit binaries of varying separation, keeping the rest mass and
circulation constant along each sequence. Solutions are presented for
configurations obeying an n=1 polytropic equation of state and spinning
parallel and antiparallel to the orbital angular momentum. We treat stars with
moderate compaction ((m/R) = 0.14) and high compaction ((m/R) = 0.19). For all
but the highest circulation sequences, the spins of the neutron stars increase
as the binary separation decreases. Our zero-circulation cases approximate
irrotational sequences, for which the spin angular frequencies of the stars
increases by 13% (11%) of the orbital frequency for (m/R) = 0.14 ((m/R) = 0.19)
by the time the innermost circular orbit is reached. In addition to leaving an
imprint on the inspiral gravitational waveform, this spin effect is measurable
in the electromagnetic signal if one of the stars is a pulsar visible from
Earth.Comment: 21 pages, 14 figures. A few explanatory sentences added and some
typos corrected. Accepted for publication in Phys. Rev.
A pre-post study of behavioural determinants and practice change in Ugandan clinical officers
Background. Understanding the drivers of âprovider behaviourâ has been highlighted as one of the six domains of behaviour change in strengthening healthcare systems.Objectives. To assess changes in healthcare provider behaviour, i.e. use of the Airway, Breathing, Circulation, Disability, Exposure (ABCDE) approach in acute illness management, after participating in a 1-day course on the assessment and management of acutely ill patients. We aimed to assess whether changes in psychological determinants of the ABCDE approach were associated with changes in the use of the approach.Methods. We used a pre-post design to study self-reported change in behaviour after a 1-day training course from pre-course to follow-up 1 month later. We also measured psychological determinants of behaviour immediately before and after and at 1-month follow-up. We explored if changes in psychological determinants were associated with change in practice 1 month later.Results. We found the following: firstly, use of the ABCDE approach increased at 1 month post-course from a median use of 50 - 90%. Secondly, the increase in the ABCDE approach was associated with a positive change in only one of the determinants of practice from pre- to post-course: perception of environmental determinants (r=0.323; p<0.05). Finally, there were no other significant associations with practice change or practice at follow-up.Conclusions. Change in perceptions of availability of resources was associated with increased use of an ABCDE approach, but evidence was limited owing to the pre-post design
A Behavioural Foundation for Natural Computing and a Programmability Test
What does it mean to claim that a physical or natural system computes? One
answer, endorsed here, is that computing is about programming a system to
behave in different ways. This paper offers an account of what it means for a
physical system to compute based on this notion. It proposes a behavioural
characterisation of computing in terms of a measure of programmability, which
reflects a system's ability to react to external stimuli. The proposed measure
of programmability is useful for classifying computers in terms of the apparent
algorithmic complexity of their evolution in time. I make some specific
proposals in this connection and discuss this approach in the context of other
behavioural approaches, notably Turing's test of machine intelligence. I also
anticipate possible objections and consider the applicability of these
proposals to the task of relating abstract computation to nature-like
computation.Comment: 37 pages, 4 figures. Based on an invited Talk at the Symposium on
Natural/Unconventional Computing and its Philosophical Significance, Alan
Turing World Congress 2012, Birmingham, UK.
http://link.springer.com/article/10.1007/s13347-012-0095-2 Ref. glitch fixed
in 2nd. version; Philosophy & Technology (special issue on History and
Philosophy of Computing), Springer, 201
Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with Beams of High Intensity and Large Brilliance
We study the production of radioisotopes for nuclear medicine in
photonuclear reactions or ()
photoexcitation reactions with high flux [()/s], small
diameter m and small band width () beams produced by Compton back-scattering of laser
light from relativistic brilliant electron beams. We compare them to (ion,np) reactions with (ion=p,d,) from particle accelerators like
cyclotrons and (n,) or (n,f) reactions from nuclear reactors. For
photonuclear reactions with a narrow beam the energy deposition in the
target can be managed by using a stack of thin target foils or wires, hence
avoiding direct stopping of the Compton and pair electrons (positrons).
isomer production via specially selected cascades
allows to produce high specific activity in multiple excitations, where no
back-pumping of the isomer to the ground state occurs. We discuss in detail
many specific radioisotopes for diagnostics and therapy applications.
Photonuclear reactions with beams allow to produce certain
radioisotopes, e.g. Sc, Ti, Cu, Pd, Sn,
Er, Pt or Ac, with higher specific activity and/or
more economically than with classical methods. This will open the way for
completely new clinical applications of radioisotopes. For example Pt
could be used to verify the patient's response to chemotherapy with platinum
compounds before a complete treatment is performed. Also innovative isotopes
like Sc, Cu and Ac could be produced for the first time
in sufficient quantities for large-scale application in targeted radionuclide
therapy.Comment: submitted to Appl. Phys.
A framework for the local information dynamics of distributed computation in complex systems
The nature of distributed computation has often been described in terms of
the component operations of universal computation: information storage,
transfer and modification. We review the first complete framework that
quantifies each of these individual information dynamics on a local scale
within a system, and describes the manner in which they interact to create
non-trivial computation where "the whole is greater than the sum of the parts".
We describe the application of the framework to cellular automata, a simple yet
powerful model of distributed computation. This is an important application,
because the framework is the first to provide quantitative evidence for several
important conjectures about distributed computation in cellular automata: that
blinkers embody information storage, particles are information transfer agents,
and particle collisions are information modification events. The framework is
also shown to contrast the computations conducted by several well-known
cellular automata, highlighting the importance of information coherence in
complex computation. The results reviewed here provide important quantitative
insights into the fundamental nature of distributed computation and the
dynamics of complex systems, as well as impetus for the framework to be applied
to the analysis and design of other systems.Comment: 44 pages, 8 figure
Redesign of Indonesian-made osteosynthesis plates to enhance their mechanical behavior
Mechanical properties determined by fatigue strength, ductility, and toughness are important measures for osteosynthesis plates in order to tolerate some load-bearing situations caused by muscle contractions and weight-bearing effects. Previous study indicated that Indonesian-made plates showed lower mechanical strength compared to the European AO standard plate. High stress under load-bearing situations often starts from surface of the plate; we therefore refined the grain size of the surface by using shot peening and surface mechanical attrition treatment (SMAT). Single cycle bending tests showed that shot-peened and SMAT-treated plates had significantly higher load limit and bending stress compared to the original plates (p<0.05). Weibull analysis confirmed the improvement of proportional load limit of SMAT-treated plates. Fatigue limit also increased upon shot-peening and SMAT treatment (improvement ratio 18% and 27%, respectively). Significant improvement ratio of fatigue tests can be observed in SMAT-treated plates compared to the untreated and shot-peened plates. Fatigue performance demonstrated equivalent results between SMAT-treated and standard plate. These designated that mechanical properties of Indonesian-made plates can be improved upon SMAT treatment leading to significant enhancement of mechanical strength thus is comparable to the standard plate. Our findings highlight the benefits of SMAT treatment to improve mechanical strength of Indonesian-made osteosynthesis plates
- âŠ