226 research outputs found
In vivo impact of a 4Â bp deletion mutation in the DLX3 gene on bone development
AbstractDistal-less 3 (DLX3) gene mutations are etiologic for Tricho-Dento-Osseous syndrome. To investigate the in vivo impact of mutant DLX3 on bone development, we established transgenic (TG) mice expressing the c.571_574delGGGG DLX-3 gene mutation (MT-DLX3) driven by a mouse 2.3 Col1A1 promoter. Microcomputed tomographic analyses demonstrated markedly increased trabecular bone volume and bone mineral density in femora from TG mice. In ex vivo experiments, TG mice showed enhanced differentiation of bone marrow stromal cells to osteoblasts and increased expression levels of bone formation markers. However, TG mice did not show enhanced dynamic bone formation rates in in vivo fluorochrome double labeling experiments. Osteoclastic differentiation capacities of bone marrow monocytes were reduced in TG mice in the presence of osteoclastogenic factors and the numbers of TRAP(+) osteoclasts on distal metaphyseal trabecular bone surfaces were significantly decreased. TRACP 5b and CTX serum levels were significantly decreased in TG mice, while IFN-Îł levels were significantly increased. These data demonstrate that increased levels of IFN-Îł decrease osteoclast bone resorption activities, contributing to the enhanced trabecular bone volume and mineral density in these TG mice. These data suggest a novel role for this DLX-3 mutation in osteoclast differentiation and bone resorption
Metastasis and bone loss: Advancing treatment and prevention
Tumor metastasis to the skeleton affects over 400,000 individuals in the United States annually, more than any other site of metastasis, including significant proportions of patients with breast, prostate, lung and other solid tumors. Research on the bone microenvironment and its role in metastasis suggests a complex role in tumor growth. Parallel preclinical and clinical investigations into the role of adjuvant bone-targeted agents in preventing metastasis and avoiding cancer therapy-induced bone loss have recently reported exciting and intriguing results. A multidisciplinary consensus conference convened to review recent progress in basic and clinical research, assess gaps in current knowledge and prioritize recommendations to advance research over the next 5 years. The program addressed three topics: advancing understanding of metastasis prevention in the context of bone pathophysiology; developing therapeutic approaches to prevent metastasis and defining strategies to prevent cancer therapy-induced bone loss. Several priorities were identified: (1) further investigate the effects of bone-targeted therapies on tumor and immune cell interactions within the bone microenvironment; (2) utilize and further develop preclinical models to study combination therapies; (3) conduct clinical studies of bone-targeted therapies with radiation and chemotherapy across a range of solid tumors; (4) develop biomarkers to identify patients most likely to benefit from bone-targeted therapies; (5) educate physicians on bone loss and fracture risk; (6) define optimal endpoints and new measures of efficacy for future clinical trials; and (7) define the optimum type, dose and schedule of adjuvant bone-targeted therapy
Measurements of Direct CP Violation, CPT Symmetry, and Other Parameters in the Neutral Kaon System
We present a series of measurements based on K -> pi+pi- and K -> pi0pi0
decays collected in 1996-1997 by the KTeV experiment (E832) at Fermilab. We
compare these four K -> pipi decay rates to measure the direct CP violation
parameter Re(e'/e) = (20.7 +- 2.8) x 10^-4. We also test CPT symmetry by
measuring the relative phase between the CP violating and CP conserving decay
amplitudes for K->pi+pi- (phi+-) and for K -> pi0pi0 (phi00). We find the
difference between the relative phases to be Delta-phi = phi00 - phi+- = (+0.39
+- 0.50) degrees and the deviation of phi+- from the superweak phase to be
phi+- - phi_SW =(+0.61 +- 1.19) degrees; both results are consistent with CPT
symmetry. In addition, we present new measurements of the KL-KS mass difference
and KS lifetime: Delta-m = (5261 +- 15) x 10^6 hbar/s and tauS = (89.65 +-
0.07) x 10^-12 s.Comment: Submitted to Phys. Rev. D, August 6, 2002; 37 pages, 32 figure
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the Ï(4S), Ï(3S), and Ï(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-âe+e- and (for the Ï(4S) only) e+e-âÎŒ+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-âe+e- and e+e-âÎŒ+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the Ï(3S) and Ï(2S) resonances, an additional uncertainty arises due to Ïâe+e-X background. For data collected off the Ï resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the Ï(4S), 0.58% (0.72%) for the Ï(3S), and 0.68% (0.88%) for the Ï(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă lâEnergie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events
The - oscillation frequency has been measured with a sample of
23 million \B\bar B pairs collected with the BABAR detector at the PEP-II
asymmetric B Factory at SLAC. In this sample, we select events in which both B
mesons decay semileptonically and use the charge of the leptons to identify the
flavor of each B meson. A simultaneous fit to the decay time difference
distributions for opposite- and same-sign dilepton events gives ps.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
Interaction of inflammatory cytokines and erythropoeitin in iron metabolism and erythropoiesis in anaemia of chronic disease
In chronic inflammatory conditions increased endogenous release of specific cytokines (TNFα, IL-1, IL-6, IFNγ and others) is presumed. It has been shown that those of monocyte lineage play a key role in cytokine expression and synthesis. This may be associated with changes in iron metabolism and impaired erythropoiesis and may lead to development of anaemia in patients with rheumatoid arthritis. Firstly, increased synthesis of acute phase proteins, like ferritin, during chronic inflammation is proposed as the way by which the toxic effect of iron and thereby the synthesis of free oxy-radicals causing the damage on the affected joints, may be reduced. This is associated with a shift of iron towards the mononuclear phagocyte system which may participate in the development of anaemia of chronic disease. Secondly, an inhibitory action of inflammatory cytokines (TNFα, IL-1), on proliferation and differentiation of erythroid progenitors as well as on synthesis of erythropoietin has been shown, thereby also contributing to anaemia. Finally, chronic inflammation causes multiple, complex disturbances in the delicate physiologic equilibrium of interaction between cytokines and cells (erythroid progenitors, cells of mononuclear phagocyte system and erythropoietin producing cells) leading to development of anaemia of chronic disease (Fig. 1)
Observation of the baryonic decay B \uaf 0 \u2192 \u39bc+ p \uaf K-K+
We report the observation of the baryonic decay B\uaf0\u2192\u39bc+p\uafK-K+ using a data sample of 471
7106 BB\uaf pairs produced in e+e- annihilations at s=10.58GeV. This data sample was recorded with the BABAR detector at the PEP-II storage ring at SLAC. We find B(B\uaf0\u2192\u39bc+p\uafK-K+)=(2.5\ub10.4(stat)\ub10.2(syst)\ub10.6B(\u39bc+))
710-5, where the uncertainties are statistical, systematic, and due to the uncertainty of the \u39bc+\u2192pK-\u3c0+ branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay B\uaf0\u2192\u39bc+p\uaf\u3c6, we determine the upper limit B(B\uaf0\u2192\u39bc+p\uaf\u3c6)<1.2
710-5 at 90% confidence level
Search for Darkonium in e+e- Collisions
Collider searches for dark sectors, new particles interacting only feebly with ordinary matter, have largely focused on identifying signatures of new mediators, leaving much of dark sector structures unexplored. In particular, the existence of dark matter bound states (darkonia) remains to be investigated. This possibility could arise in a simple model in which a dark photon (A0 ) is light enough to generate an attractive force between dark fermions. We report herein a search for a JPC ÂŒ 1ââ darkonium state, the ÏD, produced in the reaction eĂŸeâ â ÎłÏD, ÏD â A0 A0 A0 , where the dark photons subsequently decay into pairs of leptons or pions, using 514 fbâ1 of data collected with the BABAR detector. No significant signal is observed, and we set bounds on the Îł â A0 kinetic mixing as a function of the dark sector coupling constant for 0.001 < mA0 < 3.16 GeV and 0.05 < mÏD < 9.5 GeV.publishedVersio
Measurement of the CP-Violating Asymmetry Amplitude sin2
We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes
A search for the decay
We search for the rare flavor-changing neutral-current decay in a data sample of 82 fb collected with the {\sl BABAR}
detector at the PEP-II B-factory. Signal events are selected by examining the
properties of the system recoiling against either a reconstructed hadronic or
semileptonic charged-B decay. Using these two independent samples we obtain a
combined limit of
at the 90% confidence level. In addition, by selecting for pions rather than
kaons, we obtain a limit of using only the hadronic B reconstruction method.Comment: 7 pages, 8 postscript figures, submitted to Phys. Rev. Let
- âŠ