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Interaction of Inflammatory Cytokines and 
Erythropoeitin in Iron Metabolism and 

Erythropoiesis in Anaemia of Chronic Disease 
M. J O N G E N - L A V R E N C I C ,  H . R . M .  P E E T E R S ,  G. V R E U G D E N H I L  , A . J . G .  S W A A K  

Summary In chronic inflammatory conditions increased endogenous release of 
specific cytokines (TNF~, IL-1, IL-6, IFN 7 and others) is presumed. It has been 
shown that those of monocyte lineage play a key role in cytokine expression and 
synthesis. This may be associated with changes in iron metabolism and impaired 
erythropoiesis and may lead to development of anaemia in patients with rheuma- 
toid arthritis. 
Firstly, increased synthesis of acute phase proteins, like ferritin, during chronic 
inflammation is proposed as the way by which the toxic effect of iron and thereby 
the synthesis of free oxy-radicals causing the damage on the affected joints, may 
be reduced. This is associated with a shift of iron towards the mononuclear phago- 
cyte system which may participate in the development of anaemia of chronic dis- 
ease. 
Secondly, an inhibitory action of inflammatory cytokines (TNFcz,IL-1,) on prolif- 
eration and differentiation of erythroid progenitors as well as on synthesis of eryth- 
ropoietin has been shown, thereby also contributing to anaemia. 
Finally, chronic inflammation causes multiple, complex disturbances in the deli- 
cate physiologic equilibrium of interaction between cytokines and cells (erythroid 
progenitors, cells of mononuclear phagocyte system and erythropoietin producing 
cells) leading to development of anaemia of chronic disease (Fig.l). 
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Metabolism 

INTRODUCTION 

Anaemia of chronic disease (ACD) is often observed 
in patients with chronic inflammatory, malignant and in- 
fectious disorders (1,2). It has been studied most exten- 
sively in rheumatoid arthritis (RA) (3-6). 

One of potential mechanisms involved in development 
of ACD is the shift of iron towards the storage compart- 
ment and impaired iron transport to the erythroblast (7- 
9). Iron is an essential element that participates in hae- 
moglobin synthesis. Iron balance is achieved in the body 
by regulation of iron absorption and recycling of the ma- 
jority of total body iron stores (10). It is considered that 
in inflammatory conditions changes in iron metabolism 
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occur which may partly be mediated by cytokines (11). 
Tumour necrosis factor-alpha (INFer), interleukin 6 
(IL-6), IL-1 and interferon gamma (IFNT). TNFa, IL-1 
and IFN 7 (12-14) are supposed to play an important role 
(Table I). 

Control of bone marrow cell production involves com- 
plex interactions between haematopoietic cells, acces- 
sory cells in the bone marrow micro-environment, and 
an interaction of cytokines that either promote or sup- 
press cell proliferation (15). The fine regulation of eryth- 
ropoiesis is effected by erythropoietin (Epo). Epo is pro- 
duced mainly by the kidneys (16) but also extrarenally 
by macrophages (17,18). Proliferation and haemoglo- 
binization of erythroid progenitors is inducible by Epo 
in vitro (19). Inappropriately low serum Epo levels have 
been reported in anaemic RA patients compared to those 
found in patients with uncomplicated iron deficiency 
anaemia of equal severity (20-23). This relative Epo de- 
ficiency supports the concept of impaired Epo response 
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Table I: Effects of cytokines and erythropoietin on iron metabolism and erythropoiesis in ACD reported in the literature 

TNFc~ references IL-1 references IFNy references Epo. references 

Iron absorption $ 29 ? ? $ 40,41 
Ferritin synthesis/function 
- gene activation 1" 32,43,44 $ 13,43,44,92 $ 93 ? 
- function of iron transport ? ? T 11,33,39 ? 
(reduction of Fe 3+ to Fe z+) 
"lYansferrin 

- synthesis ? 94 ? 94 ? 94 $ 
- microheterogeneity $ 55,56 1" 55,56 ? ? 
- cell-receptor expression ? 49 ? 1' 93 T 
- serum-receptor level ? 50 ? ? $ 
Erythroid progenitors 
- BFU-e, CFU-e growth ,l, 30,55,72,74 $ 77,80 $ 77,81,82 $ 
Erythropoietin 
- synthesis $ 85,87 $ 85,87 ? $ 
- receptor expression ? 91 ? ? $ 

24,25,26,40 

26,40 
26 

84,86,90 

86 
86 

up-regulation/stimulation (1"), down-regulation/suppression ($), uncertain/not-studied (?) 

to anaemia and justifies the recent attempts to treat ACD 
with recombinant human Epo (rhEpo) (24-26). Further- 
more, some potent inhibitors of erythropoiesis have been 
described. Several cytokines like TNFo~, IL-1, IL-6, IL- 
8, IFN~ and IFNywhich mediate chronic inflammation 
in rheumatoid arthritis (RA)(27) and chronic infections 
appear also to contribute to disturbed erythropoiesis and 
ACD (28). This paper reviews new aspects on the role 
of cytokines and Epo in iron metabolism and erythro- 
poiesis with respect to the development of ACD (Table 
I, Fig. 1). 

Iron metabolism 

Absorption and reutilisation 

A number of changes in iron metabolism occur during 
the inflammatory response. These changes include de- 
creased absorption of iron by the intestinal mucosa (29), 
increased synthesis and content of ferritin within cells of 
the mononuclear phagocyte system (MPS) (30), in- 
creased transferrin receptor mRNA and transferrin re- 
ceptor protein synthesis (31) and a block of iron release 
from macrophages (7). 
Inflammation is characterized by increased production 
of TNFa and current evidence indicates that this cytok- 
ine is a major modulator of changes in iron metabolism 
as observed during inflammation (32). The way by which 
TNFa affects macrophage iron handling remains to be 
elucidated. It may be argued that TNFa causes increased 
degradation of intracellular ferritin, leading to the for- 
mation of haemosiderin, from which iron would be less 
easily liberated for subsequent extracellular release (12). 
Torti et al. (11) showed that TNFa induces activation of 

the ferritin heavy chain gene. Higher amount of L-fer- 
ritin with high affinity for Fe may explain reduced avail- 
ability of iron released from the MPS (11). In addition, 
Roger et al. (13) have reported that IL-1 also increases 
ferritin production with the same iron-retaining effects. 
Finally, one should consider that the main source of TNFcx 
and IL-1 is the macrophage itself, thus suggesting that 
the effect of TNFo~ and IL-1 on macrophage iron me- 
tabolism is explained by an autocrine mechanism. TNFcx 
might in fact act as a normal physiological regulator of 
macrophage iron metabolism, and abnormal iron reten- 
tion occurs only when excessive amounts of TNF& are 
produced during inflammatory processes. 
During recent years, data have been generated suggest- 
ing that also IFNy inhibits erythropoiesis in vitro, prob- 
ably by influencing iron metabolism (33). Enhanced con- 
centrations of IFNy were found in patients with chronic 
inflammatory disorders (34,35). Levels of neopterin, which 
serves as a marker for activation of macrophages by IFNy, 
are increased in a variety of infectious, inflammatory and 
malignant disorders (36-38). It was proposed that dihy- 
droneopterin catalyses the reduction of Fe 3+ to Fe 2+ 
which is required for transfer of iron from transferrin to 
apoferritin (11). In that way neopterin derivates may be 
involved in the recruitment of iron from the circulation. 
In addition, neopterin may support the stabilization of 
ferritin mRNA (39). Thus, pteridine derivates such as 
neopterin may at least play an indirect role in control- 
ling iron metabolism, and in circumstances of chronic in- 
flammation pteridin may facilitate the transfer of iron 
into activated monocytes/macrophages. This may have 
an antiproliferative action upon erythropoiesis. 
Epo is supposed to be involved in the dynamics of iron 
metabolism as well. The amount of body iron stores is 
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the major factor controlling the absorption of iron from 
the gastrointestinal tract. Furthermore, the degree of 
erythropoiesis is also believed to influence iron absorp- 
tion but the mechanism is unknown. It was demonstrat- 
ed that administration of rhEpo induces a decline in the 
labile iron compartment and an increase in reticulocyte 
count, haematocrit and serum transferrin receptor (40). 
Both factors could have produced enhanced absorption 
of iron (41). 

Cytokines and iron transport 

Ferritin 

Increased ferritin synthesis is a primary nonspecific re- 
sponse which is part of a general pattern of the systemic 
effects of inflammation (30). The expression of acute- 
phase protein genes (including ferritin) in the liver is 
controlled by the action of cytokines (42). Prominent 
stimulatory effects have been ascribed to IL-1, IL-6 and 
TNFa (43).These data suggest that TNF and IL-1 af- 
fect a subset of acute phase plasma protein genes, in- 
cluding ferritin, via cytokine-specific signal pathways (44). 
Indeed ACD is characterised by a marked increase in se- 
rum ferritin level up to 250% of normal values (6). 
Isotypes of ferritin (H or L) are not definitely estab- 
lished. There are some reports (Immune-alkaline phos- 
phatase staining of bone marrow cells using monoclonal 
antibody specific for the H and L subunit of ferritin) sug- 
gesting that the erythroblasts of patients with ACD con- 
tain higher amounts of ferritin, present in both H and L 
forms and that MPS cells of those patients have higher 
contents of L-ferritin type, compared to normal sub- 
jects (45). 
Higher amounts of L-ferritin with high affinity for iron 
could explain the reduced iron release from MPS. Fur- 
thermore, accumulation of iron in erythroblast, in form 
of H-ferritin, may participate in inhibition of prolifera- 
tion of erythroblast and lead to the anaemia (45). 
The presence of extracellular ferritin, particulary the H 
type, inhibits the proliferation of haematopoietic pro- 
genitor cells in vitro (46). Therefore it is not unlikely th.at 
in chronic inflammation release of this type of ferritin 
may contribute to development of ACD. 

Transferrin 

Transferrin is a negative acute phase protein (47) and in 
patients with active RA and ACD its levels are decreased 
(3,4,6). Transferrin plays a key role in the process by 
which cells acquire iron for growth and haemoglobin syn- 
thesis. Transferrin iron saturation, the affinity of trans- 

ferrin for the receptor and the number of transferrin re- 
ceptors expressed by erythroblast determine erythro- 
blast iron uptake. 
It has been shown that iron uptake and transferrin bind- 
ing by erythroblasts (48) as well as transferrin receptor 
expression (49) and serum transferrin receptor level (50- 
52) are reduced in patients with active RA accompa- 
nied by ACD. It has been shown that some acute phase 
proteins like c~l-anti-trypsin and ~2-macroglobulin, which 
are increased in chronic inflammation, were able to di- 
minish affinity of transferrin receptor for transferrin and 
to suppress internalization of iron binding to transfer- 
rin (53,54). 
Regulation of synthesis and glycosylation of transferrin 
and other acute phase proteins is proposed to be medi- 
ated by TNFa, IL-1, IL-6 and transforming growth fac- 
tor [3 (55,56), but the mechanism has not yet been fully 
elucidated. Current data suggest that transferrin exists 
in different microheterogenetic forms (57). The func- 
tional properties of transferrin, such as affinity to its re- 
ceptor can be modulated by this phenomenon. Altered 
biological activity of transferrin may possibly influence 
the capability of iron delivery to the erythroblasts. Struc- 
tural variation in transferrin glycosylation has been con- 
sidered in chronic disease such as RA (58). A signifi- 
cant shift in the microheterogenety pattern of transfer- 
rin was suggested in ACD, reflecting increased synthe- 
sis of transferrin with highly branched glycan chain (58), 
associated with a higher affinity to its receptor. The in- 
creased synthesis of highly sialyated transferrin, in view 
of the impaired erythroblast iron availability and total 
transferrin synthesis in ACD, may therefore be seen as 
a part of a compensatory mechanism aiming at facilitat- 
ing iron transport to erythroblasts. 
In RA the existence of ACD and alteration in the glyco- 
sylation pattern of transferrin appears to correlate with 
disease activity. One might therefore postulate that cy- 
tokines such as IL-6, TNFa and IL-1 play an important 
role in changing iron metabolism not only by inducing 
ferritin synthesis, but also by modifying transferrin gly- 
cosylation and transferin receptor numbers. 

Lactoferrin 

Lactoferrin is found in neutrophil granules (59). Higher 
serum concentrations may be present during inflamma- 
tion as a result of neutrophil degranulation (60). The role 
of lactoferrin in the development of ACD is not yet clear. 
Lactoferrin is involved in modulating a number of im- 
mune responses, as it inhibits granulopoiesis (61), sup- 
presses antibody production (62) and natural killer cell 
activity (63). Furthermore, as shown recently, lactofer- 
rin prevents recruitment and activation of leucocytes in 
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sites of inflammation and inhibits the production of both 
IL-1 and TNF by a negative feedback mechanism (64). 
Lactoferrin therefore may act as a protective factor against 
exacerbation of RA and its complications (ACD). 
However, lactoferrin may participate in a minor degree 
in the development of ACD. Iron-lactoferrin could not 
substitute for iron-transferrin (65) and iron trapping by 
lactoferrin may result in decreased iron availability for 
erythropoiesis. 

Erythropo ies i s  in A C D  

Erythroid progenitors 

There is recent evidence of impaired synthesis of hae- 
moglobin in erythroblasts of patients with ACD (66). 
Since, 5-aminolaevulinate (ALA) synthase is an impor- 
tant enzyme in the biosynthetic pathway of haem, Hous- 
ton et al. studied the synthesis of 5-aminolaevulinate 
(ALA) synthase activities in erythroblasts of patients 
with RA and anaemia, and showed significantly reduced 
activity of ALA-synthase and increased protoporphyrin 
levels in erythroblasts of patients with ACD (66). The 
therapy of ACD with r-h-Epo was shown to be associ- 
ated with increased activation of ALA-synthase, synthe- 
sis of haem and correction of anaemia (67). 
A number of investigators reported a decreased growth 
of burst forming units-erythroid (BFU-e) and colony 
forming units erythroid (CFU-e) in vitro in patients with 
ACD compared to normal controls (4,23,68) whereas 
others did not demonstrate significant differences (69,70). 
RA is associated with continuous macrophage activa- 
tion. Although resting macrophages, in physiologic num- 
bers, enhance erythroid colony formation in vitro, in- 
creased numbers of activated macrophages markedly in- 
hibit CFU-e and BFU-e growth (71). As mentioned above, 
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Fig. 1: Role of cytokines and erythroietin on the erythropoiesis. 

activated macrophages produce a number of cytokines 
which may affect erythropoiesis, including IL-1, IFN~,[3,7 
and TNFa (27). Of  these, TNFa is a potential candi- 
date as a macrophage mediator of ACD. In vitro, inhib- 
itory effects of TNFot on human CFU-e and BFU-e have 
already been proven (30,72-74). Whether these effects 
of TNF~ on erythroid progenitors are direct (29) or 
whether the presence of other factors and cells is re- 
quired (75,76) is not entirely clear. In addition, chronic 
TNF~ exposure was shown to suppress erythropoiesis in 
vivo (32,77). Nude mice inoculated with Chinese ham- 
ster ovary (CHO) cells expressing the human TNF~ gene 
developed a hypoferremic, hypo-proliferative anaemia 
with normal iron stores and decreased numbers of bone 
marrow and splenic CFU-e and BFU-e (32). TNFa con- 
centration was shown to be elevated in RA patients with 
ACD and correlated well with RA disease activity (78). 
It may be argued that TNFa plays a specific role in ACD, 
based on the inverse correlation of serum TNFcc and 
haemoglobin in the above mentioned study (78) as well 
as in a group of HIV patients (79). 
IL-1 has also been shown to inhibit erythropoiesis in vit- 
ro and in vivo and has been implicated in ACD (77,80). 
Maury et al. (79) have reported that IL-1 levels are sig- 
nificantly elevated in anaemic RA patients as compared 
with RA patients without anaemia. Means et al. (77) in- 
vestigated the inhibition of human CFU-e colony for- 
mation by IL-1 and showed that inhibition of unpuri- 
fied marrow CFU-e was indirect and was mediated by 
IFNy. 
We have already discussed the function of IFNy in iron 
metabolism. The effects of IFNy on erythroid progeni- 
tors have also been studied. Mamus et al (81), looking 
to BFU-e and CFU-e colony growth, reported that the 
inhibitory effect of IFN-ywas indirect and required ac- 
cessory cells, while Raefsky et al. (82) and Means et al. 
(77) reported that this was a result of direct action of 
IFN 7 on CFU-e. 

Erythropoietin 

Recent evidences suggest that the serum Epo level is low 
in relation to the haemoglobin concentration in anaem- 
ic patients with acute or chronic infection (20,22,83) and 
inflammation or tumours (84,85), thus showing a blunt- 
ed response to the anaemia. 
Impaired synthesis of Epo, in response to hypoxic stim- 
ulus, may contribute to persistence of anaemia. Late in 
the course of erythroid progenitor cell differentiation, 
the cell enters a period in which it depends upon Epo to 
prevent apoptosis (17). The degree of apoptosis may be 
determined by several factors, including the circulating 
erythropoietin concentration, the relative number and 
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the  aff ini ty  of  the  E p o - r e c e p t o r s  to its l igand (86). In  re-  
sponse  to  a n a e m i a ;  E p o  p r o d u c t i o n  by the  k i d n e y  in- 
creases .  This  l eads  to ra i sed  s e r u m  E p o  levels be ing  ex- 
p e r i e n c e d  by those  p r o g e n i t o r  cells  en t e r ing  the  E p o -  
d e p e n d e n t  p e r i o d  which  is suff ic ient  to p reven t  the i r  ap-  
op tos i s .  Th is  resu l t s  in survival  and  d i f f e r e n t i a t i o n  of  
e r y t h r o i d  p r o g e n i t o r s  in to  e ry th rocy tes .  T h a t  m a y  ar-  
gue for  the  hypo thes i s  tha t  i n c r e a s e d  c o n c e n t r a t i o n  of  
E p o  in A C D  is not  high enough  to dr ive a suff icient  num-  
be r  of  e ry th ro id  p rogen i to r s  to cell  p ro l i fe ra t ion ,  thus  re-  
sul t ing in u n d e r p r o d u c t i o n  of  e ry th rocy te s  and  pers is -  
t ence  of  a n a e m i a .  
I t  was p r o p o s e d  tha t  cy tokines  p l ay  a ro le  in the  p a t h o -  
genes is  o f  E p o  def ic iency  in m e n t i o n e d  d isorders .  Je lk-  
m a n  et  al. (85) showed  tha t  IL-113, IL-lc~ and TNFc~ de-  
c r e a s e d  E p o  p r o d u c t i o n  of  h u m a n  h e p a t o m a  cell  l ine  
H e p G 2  and  H e p 3 B  (87) in hypoxic  cond i t i on  and tha t  
IL-113 can  b lock  E p o  f o r m a t i o n  in i so l a t ed  s e ru m- f r e e  
p e r f u s e d  ra t  k idney  (85). 
A C D  can be c o r r e c t e d  with  r h E p o  t h e r a p y  in pa t i en t s  
wi th  R A  (24-26,48,88). In  mice,  it was a l r e ady  d e m o n -  
s t ra ted  tha t  anaemia ,  caused  exclusively by chronic  T N F -  

exposure ,  cou ld  be  c o r r e c t e d  by a d m i n i s t r a t i o n  of  exog- 
enous  E p o  (89). In  vi t ro  expe r imen t s  on  b o n e  m a r r o w  
of  R A  pat ients  suggested that  suppressive effects of  TNFc~ 
on B F U - e  and C F U - e  g rowth  could  be  pa r t ly  c o r r e c t e d  
by  the  a d d i t i o n  of  excess r h E p o  to the  cu l tu res  (90). 
T h e r e f o r e  one  m a y  conc lude  tha t  the  bene f i c i a l  effects  
of  E p o  on A C D  in R A  pa t i en t s  can be  exp la ined ,  at  leas t  
to  some  extent ,  by  the  abi l i ty  of  E p o  to c o u n t e r a c t  cy- 
t o k i n e - m e d i a t e d  supp re s s ion  of  e ry th ropo ies i s .  
A d v a n c e s  in k n o w l e d g e  r ega rd ing  E p o - r e c e p t o r  struc- 
ture  and  func t ion  a re  beg inn ing  to p rov ide  b e t t e r  unde r -  
s tanding  of  h u m a n  diseases  tha t  affect e ry th ropo ies i s  bu t  
t h e r e  is no d i rec t  ev idence  of  s ignal  t r a n s d u c t i o n  pa th -  
way d i s tu rbances  of  E p o - r e c e p t o r  in A C D .  
M o d u l a t i o n  of  express ion  and  func t ion  of  E p o  r e c e p t o r  
by cytokines ,  l ike TNFc~ (91), I F N 7  or  IL-1 ,  m a y  be  one  
poss ib le  exp l ana t i on  of  s t rong  dec rease  of  B F U - e  in vit-  
ro  if T N F a  is a d d e d  in the  cu l tu re  system. W h e t h e r  this  
is a d i rec t  effect  of  T N F  ( d o w n r e g u l a t i o n  o f  E p o - r e c e p -  
to r  n u m b e r s  on e ry th rob las t s )  or  an ind i rec t  p rocess  in- 
d u c e d  by p r o d u c t i o n  and  ac t iva t ion  of  o t h e r  cytokines ,  
r e ma ins  to be  es tab l i shed .  
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