170 research outputs found

    Analytic Model Of Electron Self-Injection In A Plasma Wakefield Accelerator In The Strongly Nonlinear Bubble Regime

    Get PDF
    Self-injection of background electrons in plasma wakefield accelerators in the highly nonlinear bubble regime is analyzed using particle-in-cell and semi-analytic modeling. It is shown that the return current in the bubble sheath layer is crucial for accurate determination of the trapped particle trajectories.Physic

    Monoenergetic Acceleration Of A Target Foil By Circularly Polarized Laser Pulse In Rpa Regime Without Thermal Heating

    Get PDF
    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationery: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.Physic

    What changes do we want to see at the next OWCs?

    Get PDF
    The Organic World Congress (OWC) will analyze the situation of the Organic world in 2014, discuss issues and develop strategies. Approaching our visions in a changing environment requires constant adjustments and actions. This applies equally to farmers, the value chain, consumption and the organic support sector. The OWC is an opportunity to reach shared conclusions on what actions and alliances with likeminded organizations (e.g. nature conversation or animal welfare NGOs) are needed so that the Organic World can grow and become more sustainable at the same time

    Shallow rainwater lenses in deltaic areas with saline seepage

    Get PDF
    In deltaic areas with saline seepage, freshwater availability is often limited to shallow rainwater lenses lying on top of saline groundwater. Here we describe the characteristics and spatial variability of such lenses in areas with saline seepage and the mechanisms that control their occurrence and size. Our findings are based on different types of field measurements and detailed numerical groundwater models applied in the south-western delta of the Netherlands. By combining the applied techniques we could extrapolate measurements at point scale (groundwater sampling, temperature and electrical soil conductivity (TEC)-probe measurements, electrical cone penetration tests (ECPT)) to field scale (continuous vertical electrical soundings (CVES), electromagnetic survey with EM31), and even to regional scale using helicopter-borne electromagnetic measurements (HEM). The measurements show a gradual mixing zone between infiltrating fresh rainwater and upward flowing saline groundwater. The mixing zone is best characterized by the depth of the centre of the mixing zone <i>D</i><sub>mix</sub>, where the salinity is half that of seepage water, and the bottom of the mixing zone <i>B</i><sub>mix</sub>, with a salinity equal to that of the seepage water (Cl-conc. 10 to 16 g l<sup>−1</sup>). <i>D</i><sub>mix</sub> is found at very shallow depth in the confining top layer, on average at 1.7 m below ground level (b.g.l.), while <i>B</i><sub>mix</sub> lies about 2.5 m b.g.l. The model results show that the constantly alternating upward and downward flow at low velocities in the confining layer is the main mechanism of mixing between rainwater and saline seepage and determines the position and extent of the mixing zone (<i>D</i><sub>mix</sub> and <i>B</i><sub>mix</sub>). Recharge, seepage flux, and drainage depth are the controlling factors

    Towards Oxide Electronics:a Roadmap

    Get PDF
    At the end of a rush lasting over half a century, in which CMOS technology has been experiencing a constant and breathtaking increase of device speed and density, Moore's law is approaching the insurmountable barrier given by the ultimate atomic nature of matter. A major challenge for 21st century scientists is finding novel strategies, concepts and materials for replacing silicon-based CMOS semiconductor technologies and guaranteeing a continued and steady technological progress in next decades. Among the materials classes candidate to contribute to this momentous challenge, oxide films and heterostructures are a particularly appealing hunting ground. The vastity, intended in pure chemical terms, of this class of compounds, the complexity of their correlated behaviour, and the wealth of functional properties they display, has already made these systems the subject of choice, worldwide, of a strongly networked, dynamic and interdisciplinary research community. Oxide science and technology has been the target of a wide four-year project, named Towards Oxide-Based Electronics (TO-BE), that has been recently running in Europe and has involved as participants several hundred scientists from 29 EU countries. In this review and perspective paper, published as a final deliverable of the TO-BE Action, the opportunities of oxides as future electronic materials for Information and Communication Technologies ICT and Energy are discussed. The paper is organized as a set of contributions, all selected and ordered as individual building blocks of a wider general scheme. After a brief preface by the editors and an introductory contribution, two sections follow. The first is mainly devoted to providing a perspective on the latest theoretical and experimental methods that are employed to investigate oxides and to produce oxide-based films, heterostructures and devices. In the second, all contributions are dedicated to different specific fields of applications of oxide thin films and heterostructures, in sectors as data storage and computing, optics and plasmonics, magnonics, energy conversion and harvesting, and power electronics
    corecore