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INTRODUCTION

With rapid advances in laser technology, laser-plasma ion accelerators have become an area of increasing interest.
Laser-accelerated multi-MeV ion beams have a variety of potential applications, such as proton therapy [1, 2, 3],
radiography [4], ion beam fast ignition [5], and laboratory astrophysics [6].

One of the promising schemes for producing high-energy proton beams is the radiation pressure acceleration (RPA)
regime in which a thin foil is pushed forward by the pressure P = 2I/c of a circularly polarized laser with high
intensity I > 1021W/cm2. A simple one dimensional (1D) model of acceleration of the delta-like thin foil (foil with
delta-function density distribution) acting as an ideally reflecting mirror [7] shows that in the RPA regime ions in
the foil can be accelerated up to arbitrarily large energy, provided the laser pulse is sufficiently long. However, 1D
simulations of a foil with finite thickness reveal some important features of the acceleration process: existence of the
untrapped ions left behind the accelerated foil and formation of the effective potential that traps the bulk of ions in a
compact phase space area [8]. These simulations show that in the acceleration process, electrons are gradually heated
by the radiation that decreases the reflectivity of the plasma mirror and eventually effectiveness of the RPA regime.

In this work, we develop a self-consistent kinetic model of the interaction of the circularly polarized laser beam
with the accelerated target that goes far beyond the delta-like description: in this model, the ion and electron densities
ni and ne are continuously distributed along the direction of target acceleration z, and the target moves with constant
acceleration without thermal heating.

ANALYTICAL MODEL

The laser pulse and target are assumed to be initially uniform in the transverse x−y plane. Since target acceleration is
constant, the radiation pressure exerted on the target [8] P = (2I/c)(1− v/c)/(1+ v/c), where v is the target velocity,
is constant. This regime always takes place for constant laser intensity during the initial subrelativistic stage v << c
of the target motion. It also can be implemented during entire acceleration process by chirping the laser frequency [9]
ω2 = ω2

0 (1+v/c)/(1−v/c) and ramping up its intensity I = I0ω2/ω2
0 , where ω0 and I0 are the initial laser frequency

and intensity respectively, so that P = P0 = 2I0/c.
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FIGURE 1. Electron (red) and ion (blue) density distribution in the accelerated target. (I) Positively charged ion tail (ne = 0), (II)

skin layer (ne = ni, �A �= 0), (III) plasma bulk (ne = ni, �A = 0), and (IV) negatively charged electron sheath (ni = 0). Longitudinal
electric field Ez originates in the ion tail, remains constant in the skin layer and plasma bulk, and vanishes in the electron sheath.

It is convenient to study the target plasma in the noninertial reference frame moving together with target. Since the
radiation pressure is relativistically invariant [10], a stationary “gravitational” field exists in this frame, corresponding
to the constant acceleration g. Note that in this frame, the frequency and the intensity of the chirped laser beam are
constant in the target area.

We consider an idealized scenario, when all target characteristics are stationary in the accelerating frame: we assume
that target ions are cold (immobile) and the radiation pressure of the circularly polarized laser beam is counterbalanced
by the pressure of the gas of hot nonrelativistic electrons Pe = ne(z)Te, where Te is the electron temperature (Te = const,
and Te << mc2, where m is the electron mass). Assuming for simplicity that electron temperature in transverse
directions is zero, one can fully describe the motion of an individual electron using conservation of energy and
generalized momentum in the transverse plane:

ε ≡ p2
z

2m
+

e2A2

2mc2
− eϕ = const, (1)

px − e
c

Ax = 0, py − e
c

Ay = 0, (2)

where �p, −e are the electron momentum and charge, and �A = (Ax,Ay,0) and ϕ are the vector and electrostatic
potentials. The amplitude of vector and electrostatic potentials do not depend on time and transverse coordinates x
and y: |�A|= A(z) and ϕ = ϕ(z).

A stationary solution f of the Vlasov equation depends on the integrals of the motion, f =F(ε)δ (px−eAx/c)δ (py−
eAy/c), where F(ε) is the electron distribution function (EDF) over energy of particles, and δ (x) is the delta function.
Although F(ε) can be a function of a quite general form, we limit our consideration to the Maxwellian EDF:

F = [n0/(2πmTe)
1/2]exp(−ε/Te), where n0 is the electron density at the point where �A = 0 and ϕ = 0. For this

EDF, the electron density is distributed by the Boltzmann law

ne =
∫

f d3 p = n0 exp
(
− ψ

Te
+

eϕ
Te

)
, (3)

where ψ = mc2a2/2 and a = eA/mc2 are the ponderomotive and dimensionless vector potentials, respectively. The
current density is given by

�j⊥ =−e
∫
�v f d3 p =−enec�a, jz = 0. (4)

STRUCTURE OF THE TARGET

In the general case, one can distinguish four different regions in the accelerated target, as shown in Fig. 1: (I) the
positively charged ion tail in which ions move slower than in the target; (II) the skin layer where the radiation transfers
its momentum to the target electrons; (III) the bulk of the neutral plasma where radiation does not penetrate; in this
region hot electrons transfer their momentum to the target ions; and (IV) the negatively charged electron sheath ahead
of the target. The ion tail and electron sheath play the role of charged capacitor plates surrounding a neutral target area
(skin layer and bulk plasma).
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FIGURE 2. Dependence of the the vector potential and the electron density in the skin layer (region II in Fig. 1): aT =

(2Te/mc2)1/2 and δp = k−1
0 (Te/2mc2)1/2/ai0.

When the target accelerates, some of the ions gain less energy and are left behind the target, forming the ion tail
(region I in Fig. 1), Ntail = mig/4πe2, where mi is the proton mass. This positively charged tail creates the longitudinal
electric field Ez, which prevents further losses of ions from the target and pushes target ions with constant acceleration.

The fact that ions in the target are immobile in the accelerating reference frame means that the electrostatic force
eEz acting on them is balanced by the inertial force mig, and therefore the electrostatic field is constant Ez = mig/e in
regions II and III, where ni = ne and ϕ =−Ezz.

The interaction between laser radiation and electrons takes place in a skin layer (region II in Fig. 1 ) with thickness
of the order of several skin depths δp. When the laser radiation does not penetrate the target, the incident and reflected
waves have the same amplitude Ar0 = Ai0, and form a standing wave in which the vector potential has the following
components: Ax = A(z)cos(ω0t − χ) and Ay = −A(z)sin(ω0t − χ), where χ = const is the phase of the standing

wave. To proceed further, we multiply both sides of Ampere law, �A′′ = −4π�j⊥/c− k2
0
�A by �A′, where prime denotes

differentiation with respect to z and k0 = ω0/c. Taking into account the equality �A′2 = A′2 and integrating over the
longitudinal coordinate from −∞ to z, we obtain

A
′2(z)+ k2

0A2(z)
8π

+ne(z)Te + eEzNe(z) = P0, (5)

N′
e = ne, (6)

where Ne(z) is the number of electrons (per unit area) located between the ion tail (z = −∞) and the point z, and
P0 = k2

0A2
i0/2π is the radiation pressure exerted on the target.

Considering Eq. (5) at z→+∞ where the electron density and vector potential vanish, we find the target acceleration,
g = eEz/mi = P0/miNtot , where Ntot is the total number of electrons per unit area in the target (equal to the total
number of ions), and the number of ions in the tail Ntail = mi(P0/miNtot)/4πe2 = Ntot [2a2

i0(ncrk−1
0 /Ntot)

2], where

ncr = mω2
0/4πe2 is the critical electron density.

To guarantee the reflection of electrons by the laser radiation in the skin layer, the ponderomotive potential must
be considerably larger than the temperature, so that maxψ >> Te or ai0 >> aT ≡ (2Te/mc2)1/2, where aT is the
characteristic value of the vector potential in the skin layer. The temperature determines the magnitude of the electron
density n∗ ≡ P0/Te = k2

0A2
i0/2πTe and the plasma frequency ωp∗ = (4πe2n∗/m)1/2. Using these estimates, one can

find that the thickness of the skin layer δp (that is, the skin depth) is always less than the laser wave length, so that

δp = c/ωp∗ = k−1
0 aT/2ai0 << k−1

0 = λ0/2π , and verify that the magnetic field in the skin layer is of the same order
as in the incident wave: aT/δp ∼ k0ai0.

The skin depth δp should also be less than or of the order of the target thickness h ≡ Ntot/n∗ = (a2
T/2a2

i0)Ntot/ncr,

that is, δp/h = 2(ai0/aT )(ncrk−1
0 /Ntot) = (Ntail/Ntot)

1/2(mc2/Te)
1/2 < 1. Therefore in this case when the laser wave

is fully reflected by cold electrons (Te << mc2), only a small fraction of ions left in the ion tail creates an electric field
accelerating a massive target, Ntail/Ntot < Te/mc2 << 1.

When the ratio δp/h is small, the electric field does not affect the skin layer structure and the electric potential
in the skin layer can be set to zero (because its variation is small- Ezδp = (Te/eh)δp = (δp/h)Te/e << Te/e). Also,
the electrostatic force pulling back electrons can be neglected here because the number of particles in the skin layer
(δp/h)Ntot is small compared to the total number of particles Ntot . The radiation pressure is balanced only by the
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FIGURE 3. Distribution of the electron (red) and ion (blue) densities in the electron sheath (region IV in Fig. 1).

pressure of electron gas. Introducing these simplifications and using k2
0A2 << A

′2, one can integrate Eq (5) and obtain:

z
δp

=−
∫ da/aT

[1− exp(−a2/a2
T )]

1/2
, (7)

In the skin layer, the ponderomotive potential changes by several electron temperatures, ψ ∼ Te, so that the vector
potential a scales here as aT while the coordinate scales as δp, see Fig. (2).

In the bulk of the plasma (region III in Fig. 1) where A⊥ = 0 and Ez = const (ϕ =−Ezz), the ion and electron density
decreases exponentially ni = ne = n∗ exp(−z/h), which obviously satisfies Eqs. (5) and (6). In this region, electrons
are reflected by the electrostatic potential transferring the momentum to the target ions.

Lastly, in the electron sheath there is only a negative charge that quenches the electric field (the ion density ni = 0
in the region IV in Fig. 1). Solving the Poisson equation at z > zsh,

eϕ ′′ = 4πene, ne = n∗ exp(eϕ/Te), (8)

with the boundary condition eϕ ′|z=zsh = −eEz = −mig, we find the electron density and the electrostatic potential in
the sheath:

ne = (Ntail/2h)[1+(z− zsh)/2h]−2, (9)

eϕ = eϕ(zsh)−2Te ln[1+(z− zsh)/2h]. (10)

where ϕsh = −Ezzsh and zsh = 2h ln(2Ntot/Ntail) and Ntail/Ntot = 2a2
i0(ncrk−1

0 /Ntot)
2. As it is always the case for the

sheath when the electron distribution has a Maxwellian tail, ϕ(z)→−∞ when z → ∞ (when the distribution tail is cut
off, ϕ is finite everywhere).

CONCLUSION

In summary, an analytical self-consistent model of the target with distributed density pushed by the circularly polarized
laser beam with chirped frequency and increasing intensity has been developed. Since there is no thermal heating of
electrons, all laser energy goes into kinetic energy of ions in the target, which always reflects the laser beam as an ideal
mirror. In the model, there are four different regions in the target: the positively charged ion tail (where ne = 0), the
skin layer (where electrons of the neutral plasma interact with radiation), the plasma bulk (where the neutral plasma
is distributed by the Boltzmann law), and the negatively charged electron sheath (where ni = 0). A small fraction of
the particles Ntail/Ntot < Te/mc2 << 1 in the ion tail and the electron sheath form a capacitor whose electric field
accelerates the target while laser radiation sustains the charge separation.

ACKNOWLEDGMENTS

This work was supported by the US DOE grants DE-FG02-04ER54742 and DE-FG02-05ER54840.

806 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.83.205.78 On: Thu, 05 Mar 2015 21:04:21



REFERENCES

1. U. Linz and J. Alonso, Phys. Rev. STAccel. Beams 10, 094801 (2007).
2. E. Fourkal, V. Velchev, J. Fan, W. Luo, and C.-M. Ma, Med. Phys. 34, 577 (2007).
3. S. V. Bulanov, T. Z. Esirkepov, V. S. Khoroshkov, A. V. Kuznetsov, and F. Pegoraro, Phys. Lett. A 299, 240 (2002).
4. M. Borghesi, J. Fuchs, S. V. Bulanov, A. J. MacKinnon, P. K. Patel, and M. Roth, Fusion Sci. Technol. 49, 412 (2006).
5. M. Roth, T. E. Cowan, M. H. Key, S. P. Hatchett, C. Brown, W. Fountain, J. Johnson, D. M. Pennington, R. A. Snavely, S. C.

Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S. V. Bulanov, E. M. Campbell, M. D. Perry, and H. Powell, Phys. Rev. Lett. 86, 436
(2001).

6. P. K. Patel, A. J. Mackinnon, M. H. Key, T. E. Cowan, M. E. Foord, M. Allen, D. F. Price, H. Ruhl, P.T. Springer, and R.
Stephens, Phys. Rev. Lett. 91 (2003).

7. J. F. L.Simmons and C. R. McInnes, Am. J. Phys. 61, 205 (1993).
8. Bengt Eliasson, Chuan S Liu, Xi Shao, Roald Z Sagdeev, and Padma K Shukla, New J. Phys 11, 073006 (2009).
9. Benjamin J. Galow, Yousef I. Salamin, Tatyana V. Liseykina, Zoltan Harman, and Christoph H. Keitel, Phys. Rev. Lett. 107,

185002 (2011).
10. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields Pergamon Press, Oxford, 1981.

807 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.83.205.78 On: Thu, 05 Mar 2015 21:04:21


