9 research outputs found

    UCx_x target design for the SPIRAL 2 project and the ALTO project

    Get PDF
    ACC NESTERInternational audienceTwo ways of production of radioactive beams using uranium carbide targets are taken into consideration: fission induced by fast neutrons and by bremsstrahlung radiation. For the SPIRAL 2 project, the fission of 238U in uranium carbide target will be induced by a neutron flow created by bombarding a carbon converter with a 40 MeV high intensity deuteron beam. Calculations and design of the target in order to reach 1013 fissions/s with good release time have been done. The second way is the photofission using an electron beam. In 2005 the ALTO project (Accélérateur Linéaire Auprès du Tandem d'Orsay) will give a 50 MeV/10μ\muA electron beam. This facility will allow more than 1011 fissions/s. In this case, the electron beam hits the target without converter. Calculations realised in order to estimate the production are used to choose the best target shape. For the two cases some R & D on targets to improve release is described

    Ion sources at GANIL

    Get PDF
    International audienceThe GANIL produces since many years heavy ion beams with Electron Cyclotron Resonance ion sources. Different facilities have been constructed during the last years in order to allow experiments in a large range of energy (from some tens of kV to 100 MeV/nucleon). The list of available ions has been greatly extended with the construction of the SPIRAL1 facility that produces and accelerates radioactives ions . An overview of the different developments made at GANIL for stable and radioactive ion beam production including the sources for the SPIRAL2 project is given in this paper

    Time projection chambers for the T2K near detectors

    Get PDF
    The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator-bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The data collected with the tracker is used to study charged current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. The tracker is surrounded by the former UA1/Nomad dipole magnet and the TPCs measure the charges, momenta, and particle types of charged particles passing through them. Novel features of the TPC design include its rectangular box layout constructed from composite panels, the use of bulk micromegas detectors for gas amplification, electronics readout based on a new ASIC, and a photoelectron calibration system. This paper describes the design and construction of the TPCs, the micromegas modules, the readout electronics, the gas handling system, and shows the performance of the TPCs as deduced from measurements with particle beams, cosmic rays, and the calibration system

    Fabrication of ultra-low radioactivity detector holders for Edelweiss-II

    No full text
    International audienceIn its first stage, the EDELWEISS-II dark matter experiment will use 21×320 g ionization-heat bolometers with NTD thermal sensors. To improve the present sensitivity of EDELWEISS to WIMP interactions by a further factor 100, ultra-low radioactivity detector holders exclusively made of copper and Teflon have been designed. The new design is using the relative expansion coefficients of copper, Teflon and germanium to hopefully ensure a dissipation-free detector holding. In order to validate this new holder, we need to compare the vibration behavior of the old holder and the new one. The amplitude of the bolometer vibrations is measured using the variation of capacitance between electrodes sputtered on the Ge crystal and reference electrodes fixed above the detector holders. We present noise measurements and compare them to the equivalent measurements using the detector holders of the Edelweiss-I experiment, which gave very satisfying results

    Radioactive Ion beam production at GANIL : status and prospectives

    No full text
    ACCProduction of radioactive ions has started at GANIL on the SPIRAL facility since 2001 and numerous multicharged radioactive ion beams have been delivered for high energy nuclear experiments. This article makes an overview of the different beams that have been produced. In the mean time, an important R and D research program is continued in oder to produce new species of radioactive elements. A new concept of multicharged radioactive production that couples a monocharged ion source, based on the monolithe concept, to an ecr ion source like nanogan3 is under developments and is described The development of monocharged ion sources with high efficiencies is also motivated by a new big project that is under studies at GANIL : the SPIRAL 2 Project. The goal of this project consists in extending the disponible radioactive ion beams to very heavy elements created with a new method of production : while the spiral 1 facility uses the projectile fragmentation for radioactive nuclei production, the spiral 2 project is based on the fission of a Uranium carbide target induced by a neutron flow created by a high intensity deuton beam. The principle and an overview of the project is presented

    The T2K experiment

    Get PDF
    The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13 by observing νe appearance in a νμ beam. It also aims to make a precision measurement of the known oscillation parameters, and sin22θ23, via νμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem

    Large bulk Micromegas detectors for TPC applications

    Get PDF
    A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact, thin and robust low mass detectors. The capability to pave a large surface with a simple mounting solution and small dead space is of particular interest for these applications. We have built several large bulk Micromegas detectors () and we have tested one in the former HARP field cage with a magnetic field. Prototypes cards of the T2K front end electronics, based on the AFTER ASIC chip, have been used in this TPC test for the first time. Cosmic ray data have been acquired in a variety of experimental conditions. Good detector performances, space point resolution and energy loss measurement have been achieved

    The T2K experiment

    No full text
    corecore